地震地质 ›› 2021, Vol. 43 ›› Issue (4): 958-971.DOI: 10.3969/j.issn.0253-4967.2021.04.014
宋成科1)(), 陈政宇2), 周思远2), 徐玉健1), 陈斌3)
收稿日期:
2021-06-11
修回日期:
2021-06-23
出版日期:
2021-08-20
发布日期:
2021-09-29
作者简介:
宋成科, 男, 1989年生, 2013年于中国地震局地壳应力研究所获固体地球物理专业硕士学位, 工程师, 现主要研究方向为地磁观测及其在地震预报中的应用, 电话: 18502288550, E-mail: songchk@126.com。
基金资助:
SONG Cheng-ke1)(), CHEN Zheng-yu2), ZHOU Si-yuan2), XU Yu-jian1), CHEN Bin3)
Received:
2021-06-11
Revised:
2021-06-23
Online:
2021-08-20
Published:
2021-09-29
摘要:
漾濞MS6.4地震发生后, 在震中周边100km内的地磁重复测点开展了原位观测工作。 结合地震前60d内的观测数据, 使用丽江地磁台连续观测资料, 消除了地磁场的日变化和长期变化成分, 获得了地震前后的区域地磁场变化。 实测结果表明, 震中S侧区域地磁场以负变化为主, 震中N侧区域地磁场以正变化为主, 距离震中20km测点处的地磁场变化量为-2.82nT, 在距离震中100km处未观测到明显的、 高于误差水平的磁场变化。 进一步利用均匀的断层滑动模型计算了漾濞地震的压磁效应, 当选择较大的岩石磁性参数时(应力敏感系数为5×10-3MPa-1), 距离震中最近测点的压磁场为-0.3nT。 动电效应的计算结果表明, 若不存在较大的电导率(0.1S/m)和较高的孔隙压力变化(10MPa), 由孔隙流体流动产生的磁场变化将比实测的地磁变化小1个量级。 因此, 压磁效应和动电效应仅能定量解释部分地磁场变化, 还有其他震磁效应影响了地磁场的变化。
中图分类号:
宋成科, 陈政宇, 周思远, 徐玉健, 陈斌. 2021年漾濞MS6.4地震前后的地磁场变化[J]. 地震地质, 2021, 43(4): 958-971.
SONG Cheng-ke, CHEN Zheng-yu, ZHOU Si-yuan, XU Yu-jian, CHEN Bin. GEOMAGNETIC FIELD CHANGE BEFORE AND AFTER 2021 YANGBI MS6.4 EARTHQUAKE[J]. SEISMOLOGY AND EGOLOGY, 2021, 43(4): 958-971.
测点 | 震中距/km | 水平最大梯度 /nT·m-1 | 垂直最大梯度 /nT·m-1 | 震前 | 震后 | ||
---|---|---|---|---|---|---|---|
观测时间 | ∑Kp | 观测时间 | ∑Kp | ||||
C1 | 20 | 3.6 | 4.2 | 2021-04-14 | 11 | 2021-05-23 | 6 |
C2 | 68 | 3.2 | 2.4 | 2021-04-20 | 21 | 2021-05-26 | 17 |
C3 | 70 | 0.6 | 2.6 | 2021-04-01 | 14 | 2021-05-30 | 9 |
C4 | 70 | 3.9 | 2.6 | 2021-04-15 | 18 | 2021-05-25 | 5 |
C5 | 75 | 1.1 | 2.6 | 2021-04-13 | 10 | 2021-05-24 | 4 |
C6 | 97 | 1.9 | 3.6 | 2021-04-01 | 14 | 2021-05-30 | 9 |
C7 | 98 | 2.4 | 2.2 | 2021-05-10 | 13 | 2021-05-31 | 3 |
C8 | 99 | 2.9 | 1.6 | 2021-04-20 | 21 | 2021-05-28 | 3 |
表1 地磁重复观测信息
Table1 Information of geomagnetic repeat measurements
测点 | 震中距/km | 水平最大梯度 /nT·m-1 | 垂直最大梯度 /nT·m-1 | 震前 | 震后 | ||
---|---|---|---|---|---|---|---|
观测时间 | ∑Kp | 观测时间 | ∑Kp | ||||
C1 | 20 | 3.6 | 4.2 | 2021-04-14 | 11 | 2021-05-23 | 6 |
C2 | 68 | 3.2 | 2.4 | 2021-04-20 | 21 | 2021-05-26 | 17 |
C3 | 70 | 0.6 | 2.6 | 2021-04-01 | 14 | 2021-05-30 | 9 |
C4 | 70 | 3.9 | 2.6 | 2021-04-15 | 18 | 2021-05-25 | 5 |
C5 | 75 | 1.1 | 2.6 | 2021-04-13 | 10 | 2021-05-24 | 4 |
C6 | 97 | 1.9 | 3.6 | 2021-04-01 | 14 | 2021-05-30 | 9 |
C7 | 98 | 2.4 | 2.2 | 2021-05-10 | 13 | 2021-05-31 | 3 |
C8 | 99 | 2.9 | 1.6 | 2021-04-20 | 21 | 2021-05-28 | 3 |
测点代码 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
磁场变化/nT | -2.82 | 1.33 | 1.20 | 2.02 | 1.92 | -0.35 | -0.99 | -0.12 |
安装误差/nT | ±0.21 | ±0.12 | ±0.13 | ±0.13 | ±0.13 | ±0.18 | ±0.11 | ±0.08 |
改正误差/nT | ±0.27 | ±0.25 | ±0.18 | ±0.75 | ±0.92 | ±0.33 | ±0.25 | ±0.17 |
表2 漾濞地震前后的地磁场变化
Table2 Changes of geomagnetic field before and after Yangbi earthquake
测点代码 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
---|---|---|---|---|---|---|---|---|
磁场变化/nT | -2.82 | 1.33 | 1.20 | 2.02 | 1.92 | -0.35 | -0.99 | -0.12 |
安装误差/nT | ±0.21 | ±0.12 | ±0.13 | ±0.13 | ±0.13 | ±0.18 | ±0.11 | ±0.08 |
改正误差/nT | ±0.27 | ±0.25 | ±0.18 | ±0.75 | ±0.92 | ±0.33 | ±0.25 | ±0.17 |
长度 /km | 宽度 /km | 埋深 /km | 滑动量 /m | 磁化强度J /A·m-1 | 应力敏感系数β /MPa-1 | 磁偏角 /(°) | 磁倾角 /(°) | 计算深度 /km |
---|---|---|---|---|---|---|---|---|
20 | 16 | 2 | 0.5 | 1 | 5×10-3 | -1.3 | 40 | 20 |
表3 压磁模型参数
Table3 Parameters of the piezomagnetic model
长度 /km | 宽度 /km | 埋深 /km | 滑动量 /m | 磁化强度J /A·m-1 | 应力敏感系数β /MPa-1 | 磁偏角 /(°) | 磁倾角 /(°) | 计算深度 /km |
---|---|---|---|---|---|---|---|---|
20 | 16 | 2 | 0.5 | 1 | 5×10-3 | -1.3 | 40 | 20 |
[1] | 艾萨·伊斯马伊力, 黄恩贤, 高丽娟. 2017. 2017年精河MS6.6地震前地磁异常特征分析[J]. 中国地震, 33(4): 764-770. |
AISA·Yisimayili, HUANG En-xian, GAO Li-juan. 2017. Analysis on geomagnetic before the Jinghe MS6.6 earthquake in 2017[J]. Earthquake Research in China, 33(4): 764-770. (in Chinese) | |
[2] | 陈斌, 袁洁浩, 王粲, 等. 2017. 流动地磁监测数据处理流程[J]. 地震研究, 40(3): 335-339. |
CHEN Bin, YUAN Jie-hao, WANG Can, et al. 2017. Data processing flowchart of Chinese Mobile Geomagnet Monitoring Array[J]. Journal of Seismological Research, 40(3): 335-339. (in Chinese) | |
[3] | 陈顺云, 刘力强, 刘培洵, 等. 2009. 应力应变与温度响应关系的理论与实验研究[J]. 中国科学(D辑), 39(10): 1446-1455. |
CHEN Shun-yun, LIU Li-qiang, LIU Pei-xun, et al. 2009. Theoretical and experimental study on relationship between stress-strain and temperature variation[J]. Science in China(Ser D), 39(10): 1446-1455. (in Chinese) | |
[4] | 何畅, 廖晓峰, 祁玉萍, 等. 2017. 2017年8月8日九寨沟MS7.0地震前成都台地磁谐波振幅比异常分析[J]. 中国地震, 33(4): 575-581. |
HE Chang, LIAO Xiao-feng, QI Yu-ping, et al. 2017. Study on anomalous variation of the geomagnetic harmonic wave amplitude ratio of the Chengdu seismic station before the MS7.0 Jiuzhaigou earthquake on August 8, 2017[J]. Earthquake Research in China, 33(4): 575-581. (in Chinese) | |
[5] | 李鸿宇, 朱培育, 王维, 等. 2018. 2013年前郭5.8级震群的地磁多方法异常分析[J]. 地震研究, 41(1): 111-117. |
LI Hong-yu, ZHU Pei-yu, WANG Wei, et al. 2018. Geomagnetic anomaly analysis of Qiaoguo M5.8 earthquake swarm by multiple methods[J]. Journal of Seismological Research, 41(1): 111-117. (in Chinese) | |
[6] | 刘海生. 2020. 云南西部温泉水化学特征及钙化沉积影响因素[D]. 北京: 中国地质大学: 32-33. |
LIU Hai-sheng. 2020. Hydrochemical characteristics of the hot springs in western Yunnan and the factors affecting the deposition of travertines from the hot springs[D]. China University of Geosciences, Beijing:32-33. (in Chinese) | |
[7] | 刘培洵, 刘力强, 陈顺云, 等. 2004. 地表岩石变形引起热红外辐射的实验研究[J]. 地震地质, 26(3): 502-511. |
LIU Pei-xun, LIU Li-qiang, CHEN Shun-yun, et al. 2004. An experiment on the infrared radiation of surficial rocks during deformation[J]. Seismology and Geology, 26(3): 502-511. (in Chinese) | |
[8] | 倪晓寅, 赖见深, 朱培育. 2019. 汶川8.0级地震前地磁日变化异常综合分析[J]. 中国地震, 35(1): 65-75. |
NI Xiao-yin, LAI Jin-shen, ZHU Pei-yu. 2019. Comprehensive analysis on geomagnetic diurnal variation anomalies before the Wenchuan MS8.0 earthquake by multiple methods[J]. Earthquake Research in China, 35(1): 65-75. (in Chinese) | |
[9] | 邵春景. 2020. 盐岩矿物微量元素对思茅和库车盆地盐矿成盐环境的限定[D]. 南京: 南京大学: 31. |
SHAO Chun-jing. 2020. Application of trace elements in salt rock minerals to define salt-forming environment of salt mines in Simao and Kuqa Basin[D]. Nanjing University, Nanjing:31. (in Chinese) | |
[10] |
宋成科, 张海洋. 2020. 2013年芦山MS7.0地震同震地磁变化分析[J]. 地震地质, 42(6): 1301-1315. doi: 10.3969/j.issn.0253-4967.2020.06.003.
DOI |
SONG Cheng-ke, ZHANG Hai-yang. 2020. Analysis of coseismic variations in magnetic field of the Lushan MS7.0 earthquake in 2013[J]. Seismology and Geology, 42(6): 1301-1315. (in Chinese) | |
[11] | 笹井洋一, 石川良宣. 1978. 伊豆半島東部地域の異常地殻活動に伴う全磁力変化(第二報): 1978年伊豆大島近海地震[J]. 東京大学地震研究所彙報, 53(3): 893-923. |
Sasai Y, Ishikawa Y. 1978. Changes in the geomagnetic total force intensity associated with the anomalous crustal activity in the eastern part of the Izu Peninsula(2): The Izu-Oshima-Kinkai earthquake of 1978 [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 53(3): 893-923. (in Japanese) | |
[12] | 涂先新, 王弘宇, 王杰, 等. 2019. 2013年岷县-漳县6.6级地震震前地磁异常分析[J]. 地震工程学报, 41(6): 1568-1573. |
TU Xian-xin, WANG Hong-yu, WANG Jie, et al. 2019. Geomagnetic anomalies prior to the Minxian-Zhangxian M6.6 earthquake of 2013[J]. China Earthquake Engineering Journal, 41(6): 1568-1573. (in Chinese) | |
[13] | 文丽敏, 康国发, 白春华, 等. 2017. 云南地区地壳磁异常与地质构造[J]. 地球物理学报, 60(9): 3493-3504. |
WEN Li-min, KANG Guo-fa, BAI Chun-hua, et al. 2017. Crustal magnetic anomalies and geological structure in Yunnan region[J]. Chinese Journal of Geophysics, 60(9): 3493-3504. (in Chinese) | |
[14] | 向才英, 周真恒. 2000. 云南地震活动与岩石圈热结构的关系[J]. 中国地震, 16(3): 263-272. |
XIANG Cai-ying, ZHOU Zhen-heng. 2000. Relationship between seismicity and geothermal structure of lithosphere in Yunnan Province, China[J]. Earthquake Research in China, 16(3): 263-272. (in Chinese) | |
[15] | 解滔, 刘杰, 卢军, 等. 2018. 2008年汶川MS8.0地震前定点观测电磁异常回溯性分析[J]. 地球物理学报, 61(5): 1922-1937. |
XIE Tao, LIU Jie, LU Jun, et al. 2018. Retrospective analysis on electromagnetic anomalies observed by ground fixed station before the 2008 Whenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics, 61(5): 1922-1937. (in Chinese) | |
[16] | 杨学慧, 王赟辉, 姚休义. 2020. 云南地区岩石圈磁场特征及震磁特征[J]. 地震研究, 43(4): 745-750. |
YANG Xue-hui, WANG Yun-hui, YAO Xiu-yi. 2020. Characteristics of lithospheric magnetic field and seismomagnetic characteristics in Yunnan area[J]. Journal of Seismological Research, 43(4): 745-750. (in Chinese) | |
[17] | 张翔, 付虹, 罗睿洁. 2019. 滇西大理地区温泉溶解二氧化碳及碳同位素特征[J]. 国际地震动态, 8:159-160. |
ZHANG Xiang, FU Hong, LUO Rui-jie. 2019. The carbon isotope characteristics of dissolved CO2 from hot springs in Dali, western Yunnan area[J]. Recent Developments in World Seismology, 8:159-160. (in Chinese) | |
[18] | Chen C, Lin J, Gao Y, et al. 2021. Magnetic pulsations triggered by microseismic ground motion[J]. Journal of Geophysical Research: Solid Earth, 126(3): 1-13. |
[19] |
Davis P M, Stacey F D, Zablocki C J, et al. 1979. Improved signal discrimination in tectonomagnetism: Discovery of a volcanomagnetic effect at Kilauea, Hawaii[J]. Physics of the Earth and Planetary Interiors, 19(4): 331-336.
DOI URL |
[20] |
Dobrovolsky L P, Gershenzon N I, Gokhberg M B. 1989. Theory of electrokinetic effect occurring at the final stage in the preparation of a tectonic earthquake[J]. Physics of the Earth and Planetary Interiors, 57(1-2): 144-156.
DOI URL |
[21] | Febriani F, Han P, Yoshino C, et al. 2014. Ultra low frequency(ULF)electromagnetic anomalies associated with large earthquakes in Java Island, Indonesia by using wavelet transform and detrended fluctuation analysis[J]. Natural Hazards and Earth System Sciences, 14(4): 789-798. |
[22] |
Fitterman D V. 1979. Theory of electrokinetic-magnetic anomalies in a faulted half-space[J]. Journal of Geophysical Research, 84(B11): 6031-6040.
DOI URL |
[23] |
Fraser-Smith A C, Bernardi A, McGill P R, et al. 1990. Low-frequency magnetic field measurements near the epicenter of the MS7.1 Loma Prieta earthquake[J]. Geophysical Research Letter, 17(9): 1465-1468.
DOI URL |
[24] |
Gao Y, Chen X, Hu H, et al. 2014. Induced electromagnetic field by seismic waves in Earth’s magnetic field[J]. Journal of Geophysical Research: Solid Earth, 119(7): 5651-5685.
DOI URL |
[25] |
Gao Y, Wang D, Wen J, et al. 2019. Electromagnetic responses to an earthquake source due to the motional induction effect in a 2D layered model[J]. Geophysical Journal International, 219(1): 563-593.
DOI URL |
[26] |
Han P, Hattori M, Hirokawa M, et al. 2014. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001-2010 [J]. Journal of Geophysical Research: Space Physics, 119(6): 4998-5001.
DOI URL |
[27] |
Hanks T. 1974. Constraints on the dilatancy-diffusion model of the earthquake mechanism[J]. Journal of Geophysical Research, 79(20): 3023-3025.
DOI URL |
[28] |
Hattori K, Han P, Yoshino C, et al. 2013. Investigation of ULF seismo-magnetic phenomena in Kanto, Japan during 2000-2010: Case studies and statistical studies[J]. Survey in Geophysics, 34(3): 293-316.
DOI URL |
[29] | Hattori K, Takahashi I, Yoshino C, et al. 2004. ULF geomagnetic field measurements in Japan and some recent results associated with Iwateken Nairiku Hokubu earthquake in 1998[J]. Physics and Chemistry of the Earth, 29(4-9): 481-494. |
[30] |
Hayakawa M, Kawate R, Molchanov O A, et al. 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of August 1993 [J]. Geophysical Research Letters, 23(3): 241-244.
DOI URL |
[31] |
Hirano T, Hattori K. 2001. ULF geomagnetic changes possibly associated with the 2008 Iwate-Miyagi Nairiku earthquake[J]. Journal of Asian Earth Sciences, 41(4-5): 442-449.
DOI URL |
[32] |
Johnston M J S, Mueller R J. 1987. Seismomagnetic observation during the 8 July 1986 magnitude 5.9 North Palm Springs earthquake[J]. Science, 237(4819): 1201-1203.
PMID |
[33] |
Martin R J. 1980. Is piezomagnetism influenced by microcracks during cyclic loading?[J]. Journal of Geomagnetism and Geoelectricity, 32(12): 741-755.
DOI URL |
[34] | Morgan F D, Williams E R, Madden T R, et al. 1989. Streaming potential properties of Westerly granite with applications[J]. Journal of Geophysical Research: Solid Earth, 94(B9): 12449-12461. |
[35] |
Nagata T. 1969. Basic magnetic properties of rocks under the effects of mechanical stresses[J]. Tectonophysics, 9(2-3): 167-195.
DOI URL |
[36] |
Napoli R, Currenti G, Del Negro C, et al. 2008. Volcanomagnetic evidence of the magmatic intrusion on 13th May 2008 Etna eruption[J]. Geophysical Research Letters, 35(22): L22301.
DOI URL |
[37] |
Napoli R, Pistorio A, Scandura D, et al. 2011. Design and application of an adaptive nonstationary filter for noise reduction in volcanomagnetic monitoring at Mt Etna[J]. Geomatics, Natural Hazards and Risk, 2(3): 291-304.
DOI URL |
[38] |
Nishida Y, Sugisaki Y, Takahashi K, et al. 2004. Tectonomagnetic study in the eastern part of Hokkaido, NE Japan: Discrepancy between observed and calculated results[J]. Earth Planets and Space, 56(11): 1049-1058.
DOI URL |
[39] | Okubo A, Kanda W, Ishihara K. 2006. Numerical simulation of volcanomagnetic effects due to hydrothermal activity[J]. Disaster Prevention Research Institute Annuals, 49(C): 211-217. |
[40] |
Okubo K, Takeuchi N, Utsugi M, et al. 2011. Direct magnetic signals from earthquake rupturing: Iwate-Miyagi earthquake of M7.2, Japan[J]. Earth and Planetary Science Letters, 305(1-2): 65-72.
DOI URL |
[41] |
Oshiman N. 1990. Enhancement of tectonomagnetic change due to non-uniform magnetization in the Earth’s crust: Two-dimensional case studies[J]. Journal of Geomagnetism and Geoelectricity, 42(5): 607-619.
DOI URL |
[42] |
Pride S. 1994. Governing equations for the coupled electromagnetics and acoustics of porous-media[J]. Physical Review B: Condensed Matter, 50(21): 15678-15696.
DOI URL |
[43] |
Revol J, Day R, Fuller M D. 1977. Magnetic behavior of magnetite and rocks stressed to failure: Relation to earthquake prediction[J]. Earth and Planetary Science Letters, 37(2): 296-306.
DOI URL |
[44] | Sasai Y. 1980. Application of the elasticity theory of dislocations to tectonomagnetic modelling[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 55(2): 387-447. |
[45] |
Sasai Y. 1994. Piezomagnetic fields produced by dislocation sources[J]. Surveys in Geophysics, 15(4): 363-382.
DOI URL |
[46] |
Stacey F. 1964. The seismomagnetic effect[J]. Pure and Applied Geophysics, 58(1): 5-22.
DOI URL |
[47] |
Stacey F, Johnston M. 1972. Theory of the piezomagnetic effect in titanomagnetite bearing rocks[J]. Pure and Applied Geophysics, 97(1): 146-155.
DOI URL |
[48] |
Thomas J N, Love J J, Johnston M J S, et al. 2009a. On the reported magnetic precursor of the 1993 Guam earthquake[J]. Geophysical Research Letters, 36(16): L16301.
DOI URL |
[49] |
Thomas J N, Love J J, Johnston M J S. 2009b. On the reported magnetic precursor of the 1989 Loma Prieta earthquake[J]. Physics of the Earth and Planetary Interiors, 173(3-4): 207-215.
DOI URL |
[50] |
Wang R, Lorenzo-Martín F, Roth F. 2006. PSGRN/PSCMP: A new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers and Geosciences, 32(4): 527-541.
DOI URL |
[51] |
Wang Z, Chen B, Yuan J. 2020. Taylor polynomial model of the geomagnetic field in an underground gas storage area[J]. Geomagnetism and Aeronomy, 60(3): 373-380.
DOI URL |
[52] |
Wang Z, Chen B, Yuan J, et al. 2018. Localized geomagnetic field anomalies in an underground gas storage[J]. Physics of the Earth and Planetary Interiors, 283:92-97.
DOI URL |
[53] |
Wang Z, Yuan J, Chen B, et al. 2019. Local magnetic field changes during gas injection and extraction in an underground gas storage[J]. Geophysical Journal International, 217(1): 271-279.
DOI URL |
[54] |
Xu G J, Han P, Huang Q H, et al. 2013. Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake(MW9.0)[J]. Journal of Asian Earth Sciences, 77:59-65.
DOI URL |
[55] |
Yamazaki K. 2013. Improved models of the piezomagnetic field for the 2011 MW9.0 Tohoku-Oki earthquake[J]. Earth and Planetary Science Letters, 363:9-15.
DOI URL |
[56] | Yang X, Lin W, Liu P, et al. 2017. Experimental and numerical investigation of the temperature response to stress changes of rocks[J]. Journal of Geophysical Research, 122(7): 5101-5117. |
[1] | 苟家宁, 刘子维, 江颖, 张晓彤. 震前重力扰动与背景噪声时空变化特征以玛多MS7.4与漾濞MS6.4地震为例[J]. 地震地质, 2023, 45(1): 252-268. |
[2] | 张珂, 王鑫, 杨红樱, 王玥, 徐岩, 李静. 2021年云南漾濞MS6.4地震序列特征及其发震构造分析[J]. 地震地质, 2023, 45(1): 231-251. |
[3] | 樊文杰. 2021年5月21日漾濞MS6.4地震及周边的构造应力场特征和动力学意义[J]. 地震地质, 2023, 45(1): 208-230. |
[4] | 刘东, 郝洪涛, 王青华, 郑秋月, 黄江培. 2021年云南漾濞MS6.4地震前重力变化[J]. 地震地质, 2021, 43(5): 1157-1170. |
[5] | 张斌, 李小军, 荣棉水, 俞言祥, 王玉石, 王继鑫. 云南漾濞 MS6.4地震强震动特征和震害分析[J]. 地震地质, 2021, 43(5): 1127-1139. |
[6] | 王子博, 刘瑞丰, 孙丽, 李赞, 孔韩东. 2021年云南漾濞MS6.4地震辐射能量的快速测定[J]. 地震地质, 2021, 43(4): 908-919. |
[7] | 梁姗姗, 徐志国, 张广伟, 邹立晔, 刘艳琼, 郭铁龙. 2021年云南漾濞MS6.4地震震源区断层系统的几何复杂性[J]. 地震地质, 2021, 43(4): 827-846. |
[8] | 宋成科, 张海洋. 2013年芦山MS7.0地震同震地磁变化分析[J]. 地震地质, 2020, 42(6): 1301-1315. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||