[1] 尹昊, 单新建, 张迎峰, 等. 2018. 高频GPS和强震仪数据在汶川地震参数快速确定中的初步应用[J]. 地球物理学报, 61(5): 1806—1816. YIN Hao, SHAN Xin-jian, ZHANG Ying-feng, et al. 2018. Rapid determination of source parameters for the 2008 Wenchuan earthquake constrained by high-rate GPS and strong motion data[J]. Chinese Journal of Geophysics, 61(5): 1806—1816(in Chinese). [2] Abdrakhmatov K, Aldazhanov S, Hager B, et al. 1996. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates[J]. Nature, 384:450—453. [3] Aki K, Richards P. 2002. Quantitative Seismology(Second Edition)[M]. University Science Books, Sausalito, California, USA. [4] Allen M B, Vincent S J, Wheeler P J. 1999. Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim Basin, northwest China[J]. Tectonics, 18(4): 639—654. [5] Aniscore E A, Elliott J R, Copley A, et al. 2018. Blind thrusting, surface folding, and the development of geological structure in the MW6.3 2015 Pishan(China)earthquake[J]. Journal of Geophysical Research, 122(11): 9359—9382. [6] Barnhart W D, Lohman R B. 2013. Phantom earthquakes and triggered aseismic creep: Vertical partitioning of strain during earthquake sequences in Iran[J]. Geophysical Research Letters, 40(5): 819—823. [7] Copley A, Avouac J P, Wernicke B P. 2011. Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet[J]. Nature, 472:79—81. [8] Copley A, Karasozen E, Oveisi B, et al. 2015. Seismogenic faulting of the sedimentary sequence and laterally variable material properties in the Zagros Mountains(Iran)revealed by the August 2014 Murmuri(E. Dehloran)earthquake sequence[J]. Geophysical Journal International, 203(2): 1436—1459. [9] Elliott J R, Jolivet R, González P J, et al. 2016. Himalayan megathrust geometry and relation to topography revealed by the Gorkha earthquake[J]. Nature Geoscience, 9(2): 174—180. [10] Farr T G, Rosen P A, Caro E, et al. 2007. The shuttle radar topography mission[J]. Reviews of Geophysics, 45(2): 1—33. [11] Gilligan A, Roecker S W, Priestley K W, et al. 2014. Shear velocity model for the Kyrgyz Tien Shan from joint inversion of receiver function and surface wave data[J]. Geophysical Journal International, 199(1): 480—498. [12] Gong W, Meyer F, Webley P W, et al. 2011. Methods of InSAR atmosphere correction for volcano activity monitoring[C]. IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada. [13] He P, Wen Y, Li S, et al. 2021. Present-day orogenic processes in the western Kalpin nappe explored by interseismic GNSS measurements and coseismic InSAR observations of the 2020 MW6.1 Kalpin event[J/OL]. Geophysical Journal International. doi: 10.1093/gji/ggab097. [14] Heermance R V, Chen J, Burbank D W, et al. 2008. Temporal constraints and pulsed Late Cenozoic deformation during the structural disruption of the active Kashi foreland, northwest China[J]. Tectonics, 27(6): 1—27. [15] Huang G, Roecker S W, Levin V, et al. 2017. Dynamics of intracontinental convergence between the western Tarim Basin and central Tien Shan constrained by centroid moment tensors of regional earthquakes[J]. Geophysical Journal International, 208(1): 561—576. [16] Kao H, Chen W. 2000. The Chi-Chi earthquake sequence: Active, out-of-sequence thrust faulting in Taiwan[J]. Science, 288(5475): 2346—2349. [17] Keith P, Calum B, Jackson J A. 1994. Implications of earthquake focal mechanism data for the active tectonics of the south Caspian Basin and surrounding regions[J]. Geophysical Journal International, 118(1): 111—141. [18] Kulikova G, Kruger F. 2017. Historical seismogram reproductions for the source parameters determination of the 1902, Atushi(Kashgar)earthquake[J]. Journal of Seismology, 21(1): 1577—1597. [19] Li A, Ran Y K, Xu L, et al. 2013. Paleoseismic study of the east Kalpintage fault in southwest Tianshan based on deformation of alluvial fans and 10Be dating[J]. Natural Hazards, 68(2): 1075—1087. [20] Métivier F, Gaudemer Y. 1998. Mass transfer between eastern Tien Shan and adjacent basins(central Asia): Constraints on regional tectonics and topography[J]. Geophysics of Journal Intentional, 128(1): 1—17. [21] Molnar P, Ghose S. 2000. Seismic moments of major earthquakes and the rate of shortening across the Tien Shan[J]. Geophysical Research Letters, 27(16): 2377—2380. [22] Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135—1154. [23] Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates[J]. Nature, 311(5987): 615—621. [24] Qu C, Qiao X, Shan X, et al. 2020. InSAR 3-D coseismic displacement field of the 2015 MW7.8 Nepal earthquake: Insights into complex fault kinematics during the event[J]. Remote Sensing, 12(23): 1—17. [25] Sloan R A, Jackson J A, McKenzie D, et al. 2011. Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension[J]. Geophysical Journal International, 185(1): 1—29. [26] Sobel E R, Dumitru T A. 1997. Thrusting and exhumation around the margins of the western Tarim Basin during the India-Asia collision[J]. Journal of Geophysics Research: Solid Earth, 102(B3): 5043—5063. [27] Turner S A, Liu J G, Cosgrove G W. 2011. Structural evolution of the Piqiang fault zone, NW Tarim Basin, China[J]. Journal of Asian Earth Sciences, 40(1): 394—402. [28] Wang R, Diao F, Hoechner A. 2013. SDM: A geodetic inversion code incorporating with layered crust structure and curved fault geometry[C]. The 2013 EGU GeneralAssembly Conference, Vienna, Austria. [29] Wang M, Shen Z. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. [30] Wang R J, Schurr B, Milkereit C, et al. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bulletin of the Seismological Society of America, 101(5): 2029—2044. [31] Werner C L, Wegmüller U, Strozzi T. 2002. Processing strategies for phase unwrapping for InSAR applications[C]//Proceedings EUSAR 2002. 4th European Conference on Synthetic Aperture Radar, Cologne, Germany. [32] Xu Y, Roecker S W, Wei R, et al. 2006. Analysis of seismic activity in the crust from earthquake relocation in the central Tien Shan[J]. Bulletin of the Seismological Society of America, 96(2): 737—744. [33] Yang Y, Yao W Q, Yan J, et al. 2018. Mesozoic and Cenozoic structural deformation in the NW Tarim Basin, China: A case study of the Piqiang-Selibuya Fault[J]. International Geology Review, 60(7): 929—943. [34] Yao Y, Wen S, Li T, et al. 2020. The 2020 MW6.0 Jiashi earthquake: A fold earthquake event in the southern Tian Shan, northwest China[J]. Seismological Research Letters, 92(2A): 859—869. [35] Yin A, Nie S, Craig P, et al. 1998. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan[J]. Tectonics, 17(1): 1—27. [36] Yu C, Li Z, Penna N T, et al. 2018. Generic atmospheric correction model for Interferometric Synthetic Aperture Radar observations[J]. Journal of Geophysical Research: Solid Earth, 123(10): 9202—9222. [37] Yu P, Qiao X, Xiong W, et al. 2020. Source model for the MW6.0 earthquake in Jiashi, China on 19 January 2020 from Sentinel -1A InSAR data[J]. Earth Planets and Space, 72:1—11. [38] Zhang Y F, Shan X J, Zhang G H, et al. 2018. Source model of the 2016 Kumamoto, Japan, earthquake constrained by InSAR, GPS, and strong-motion data: Fault slip under extensional stress[J]. Bulletin of the Seismological Society of America, 108(5A): 2675—2686. [39] Zubovich A, Wang X, Scherba Y, et al. 2010. GPS velocity field for the Tien Shan and surrounding regions[J]. Tectonics, 29(6): 1—23. |