[1] 蒋长胜, 吴忠良, 庄建仓. 2013. 地震的 “序列归属”问题与ETAS模型: 以唐山序列为例[J]. 地球物理学报, 56(9): 2971—2981. JIANG Chang-sheng, WU Zhong-liang, ZHUANG Jian-cang. 2013. ETAS model applied to the earthquake-sequence association(ESA)problem: The Tangshan sequence[J]. Chinese Journal of Geophysics, 56(9): 2971—2981(in Chinese). [2] 蒋长胜, 庄建仓. 2010. 基于时-空ETAS模型给出的川滇地区背景地震活动和强震潜在危险区[J]. 地球物理学报, 53(2): 305—317. JIANG Chang-sheng, ZHUANG Jian-cang. 2010. Evaluation of background seismicity and potential source zones of strong earthquakes in the Sichuan-Yunan region based on the space-time ETAS model[J]. Chinese Journal of Geophysics, 53(2): 305—317(in Chinese). [3] 蒋海昆, 宋金, 吴琼, 等. 2012. 基于ETAS模型对三峡库区流体触发微震活动的定量检测[J]. 地球物理学报, 55(7): 2341—2352. JIANG Hai-kun, SONG Jin, WU Qiong, et al. 2012. Quantitative investigation of fluid triggering on seismicity in the Three Gorge Reservoir area based on ETAS model[J]. Chinese Journal of Geophysics, 55(7): 2341—2352(in Chinese). [4] 龙锋, 杜方, 阮祥, 等. 2010. 用ETAS模型分析自贡矿井注水触发地震[J]. 中国地震, 26(2): 164—171. LONG Feng, DU Fang, RUAN Xiang, et al. 2010. Water injection triggered earthquakes in the Zigong mineral wells in ETAS model[J]. Earthquake Research in China, 26(2): 164—171(in Chinese). [5] 徐锡伟, 张先康, 冉勇康, 等. 2006. 南天山地区巴楚-伽师地震(MS6.8)发震构造初步研究[J]. 地震地质, 28(2): 161—178. XU Xi-wei, ZHANG Xian-kang, RAN Yong-kang, et al. 2006. The preliminary study on seismotectonics of the 2003 AD Bachu-Jiashi earthquake(MS6.8), southern Tian Shan[J]. Seismology and Geology, 28(2): 161—178(in Chinese). [6] 张竹琪, 陈永顺, 林间. 2008. 1997年伽师震群中相邻正断层和走滑断层之间相互应力作用[J]. 中国科学(D辑), 38(3): 334—342. ZHANG Zhu-qi, CHEN Yong-shun, LIN Jian. 2008. Stress interactions between normal faults and adjacent strike-slip faults of 1997 Jiashi earthquake swarm[J]. Science in China(Ser D), 38(3): 334—342. [7] 赵翠萍, 夏爱国. 2003. 新疆巴楚-伽师6.8级地震序列震源特征的初步研究[J]. 内陆地震, 17(2): 182—189. ZHAO Cui-ping, XIA Ai-guo. 2003. Primary study on the source feature of Bachu-Jiashi MS=6.8 earthquake series[J]. Inland Earthquake, 17(2): 182—189(in Chinese). [8] Console R, Murru M. 2001. A simple and testable model for earthquake clustering[J]. Journal of Geophysical Research: Solid Earth, 106(B5): 8699—8711. [9] Console R, Murru M, Lombardi A M. 2003. Refining earthquake clustering models[J]. Journal of Geophysical Research: Solid Earth, 108(B10): ESE5-1—5-9. [10] Daley D J, Vere-Jones D. 2003. An Introduction to Theory of Point Processes-Volume 1: Elementary Theory and Methods(2nd Edition)[M]. Springer-Verlag, New York: 17, 33. [11] Daley D J, Vere-Jones D. 2007. An Introduction to the Theory of Point Processes[M]. Springer-Verlag, New York. [12] Gardner J K, Knopoff L. 1974. Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian?[J]. Bulletin of the Seismological Society of America, 64(5): 1363—1367. [13] Guo Y C, Zhuang J C, Zhou S Y. 2015. An improved space-time ETAS model for inverting the rupture geometry from seismicity triggering[J]. Journal of Geophysical Research: Solid Earth, 120(5): 3309—3323. [14] Helmstetter A, Sornette D. 2003. Foreshocks explained by cascades of triggered seismicity[J]. Journal of Geophysical Research: Solid Earth, 108(B10): ESE1-1—1-10. [15] Kagan Y Y. 1991. Likelihood analysis of earthquake catalogues[J]. Geophysical Journal International, 106(1): 135—148. [16] Kattamanchi S, Tiwari R K, Ramesh D S. 2017. Non-stationary ETAS to model earthquake occurrences affected by episodic aseismic transients[J]. Earth Planets and Space, 69(1): 1—14. [17] Kawamura M, Chen C. 2013. Precursory change in seismicity revealed by the Epidemic-Type Aftershock-Sequences model: A case study of the 1999 Chi-Chi, Taiwan earthquake[J]. Tectonophysics, 592:141—149. [18] Keilis-Borok V I, Knopoff L, Rotvain I M, et al. 1980. Bursts of seismicity as long-term precursors of strong earthquakes[J]. Journal of Geophysical Research, 85(B2): 803—811. [19] Musmeci F, Vere-Jones D. 1992. A space-time clustering model for historical earthquakes[J]. Annals of the Institute of Statistical Mathematics, 44(1): 1—11. [20] Ogata Y. 1978. The asymptotic behaviour of maximum likelihood estimators for stationary point processes[J]. Annals of the Institute of Statistical Mathematics, 30(part A): 243—261. [21] Ogata Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes[J]. Journal of the American Statistical Association, 83(401): 9—27. [22] Ogata Y. 1992. Detection of precursory relative quiescence before great earthquakes through a statistical model[J]. Journal of Geophysical Research: Solid Earth, 97(B13): 19845—19871. [23] Ogata Y. 1998. Space-time point-process models for earthquake occurrences[J]. Annals of the Institute of Statistical Mathematics, 50(2): 379—402. [24] Ogata Y. 2004. Space-time model for regional seismicity and detection of crustal stress changes[J]. Journal of Geophysical Research: Solid Earth, 109(B3): 1—16. [25] Ogata Y, Katsura K, Tanemura M. 2003. Modelling heterogeneous space-time occurrences of earthquakes and its residual analysis[J]. Journal of the Royal Statistical Society: Series C(Applied Statistics), 52(4): 499—509. [26] Ogata Y, Katsura K, Tsuruoka H, et al. 2019. High-resolution 3D earthquake forecasting beneath the greater Tokyo area[J]. Earth, Planets and Space, 71(1): 1—14. [27] Ogata Y, Zhuang J C. 2006. Space-time ETAS models and an improved extension[J]. Tectonophysics, 413(1-2): 13—23. [28] Omori F. 1894. On the aftershocks of earthquakes[J]. Journal of the College of Science, Imperial University of Tokyo, 7:111—200. [29] Rathbun S L. 1993. Modeling marked spatio-temporal point patterns[J]. Bulletin of the International Statistical Institute, 55(2): 379—396. [30] Rathbun S L. 1996. Asymptotic properties of the maximum likelihood estimator for spatio-temporal point processes[J]. Journal of Statistical Planning and Inference, 51(1): 55—74. [31] Reasenberg P. 1985. Second-order moment of central California seismicity, 1969—1982[J]. Journal of Geophysical Research, 90(B7): 5479—5495. [32] Utsu T. 1970. Aftershocks and earthquake statistics(1): Some parameters which characterize an aftershock sequence and their interrelations[J]. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 3(3): 129—195. [33] Yoder M R, Rundle J B, Glasscoe M T. 2014. Near-field ETAS constraints and applications to seismic hazard assessment[J]. Pure and Applied Geophysics, 172(8): 2277—2293. [34] Zhuang J C, Chang C, Ogata Y, et al. 2005. A study on the background and clustering seismicity in the Taiwan region by using point process models[J]. Journal of Geophysical Research: Solid Earth, 110: B05S18-1—18-12. [35] Zhuang J C, Ogata Y. 2006. Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 73:046134. [36] Zhuang J C, Ogata Y, Vere-Jones D. 2002. Stochastic declustering of space-time earthquake occurrences[J]. Journal of the American Statistical Association, 97(458): 369—380. [37] Zhuang J C, Ogata Y, Vere-Jones D. 2004. Analyzing earthquake clustering features by using stochastic reconstruction[J]. Journal of Geophysical Research: Solid Earth, 109(B5): B05301. |