[1] 郭玲莉, 刘力强, 刘培洵. 2014. 多通道动态应变观测系统在地震模拟实验中的应用[J]. 地震地质, 36(3): 929—938. GUO Ling-li, LIU Li-qiang, LIU Pei-xun.2014. The application of multi-channel dynamic strain observation system in earthquake simulation experiments[J]. Seismology and Geology, 36(3): 929—938(in Chinese). [2] 郭玲莉. 2013. 断层失稳滑动瞬态过程的实验观测与分析 [D]. 北京: 中国地震局地质研究所. GUO Ling-li.2013. Observations and analyses to transient processes of unstable slip on the fault by laboratory experiments [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [3] 李普春, 刘力强, 郭玲莉, 等. 2013. 粘滑过程中的多点错动[J]. 地震地质, 35(1): 125—137. LI Pu-chun, LIU Li-qiang, GUO Ling-li, et al. 2013. Multi-point dislocation in stick-slip process[J]. Seismology and Geology, 35(1): 125—137(in Chinese). [4] 李世念2017. 断层失稳过程超动态变形时空模式的实验研究 [D]. 北京: 中国地震局地质研究所. LI Shi-nian.2017. Experimental study on the spatial and temporal patterns of the super-dynamic deformation of unstable sliding of fault [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [5] 李世念, 齐文博, 刘力强. 2019. 超动态变形场长时间观测系统[J]. 地震地质, 41(6): 1529—1538. LI Shi-nian, QI Wen-bo, LIU Li-qiang.2019. A super-dynamic deformation measurement system with long-time parallel continuous acquisition[J]. Seismology and Geology, 41(6): 1529—1538(in Chinese). [6] 刘力强, 刘天昌. 1995. 室内构造变形物理场观测系统的设计与实施[J]. 地震地质, 17(4): 357—362. LIU Li-qiang, LIU Tian-chang.1995. Design and trial-manufacture of the system for measuring physical fields of tectonic deformation in laboratory[J]. Seismology and Geology, 17(4): 357—362(in Chinese). [7] 马瑾. 2016. 从 “是否存在有助于预报的地震先兆”说起[J]. 科学通报, 61(4-5): 409—414. MA Jin.2016. On “whether earthquake precursors help for prediction do exist”[J]. Chinese Science Bulletin, 61(4-5): 409—414(in Chinese). [8] 马瑾, 郭彦双. 2014. 失稳前断层加速协同化的实验室证据和地震实例[J]. 地震地质, 36(3): 547—561. MA Jin, GUO Yan-shuang.2014. Accelerated synergism prior to fault instability: Evidence from laboratory experiments and an earthquake case[J]. Seismology and Geology, 36(3), 547—561(in Chinese). [9] 马瑾, Sherman S I, 郭彦双. 2012. 地震前亚失稳应力状态的识别: 以5°拐折断层变形温度场演化的实验为例[J]. 中国科学(D辑), 42(5): 633—645. MA Jin, Sherman S I, GUO Yan-shuang.2012. Identification of meta-instable stress state based on experimental study of evolution of the temperature field during stick-slip instability on a 5° bending fault[J]. Science in China(Ser D), 42(5): 633—645(in Chinese). [10] 卓燕群. 2015. 断层亚失稳阶段变形场时空演化的实验研究 [D]. 北京: 中国地震局地质研究所. ZHUO Yan-qun.2015. Experimental study on the spatiotemporal evolution of deformation fields of faults in the meta-instability stage [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [11] Andrews D J.1976. Rupture velocity of plane strain shear cracks[J]. Journal of Geophysical Research, 81(32): 5679—5687. [12] Ben-David O, Cohen G, Fineberg J.2010a. The dynamics of the onset of frictional slip[J]. Science, 330(6001): 211—214. [13] Ben-David O, Fineberg J.2011. Static friction coefficient is not a material constant[J]. Physical Review Letter, 106(25): 254301. [14] Ben-David O, Rubinstein S M, Fineberg J.2010b. Slip-stick and the evolution of frictional strength[J]. Nature, 463(7224): 76—79. [15] Bouchon M, Bouin M P, Karabulut H, et al. 2001. How fast is rupture during an earthquake?New insights from the 1999 Turkey earthquakes[J]. Geophysical Research Letters, 28(14): 2723—2726. [16] Dieterich J H.1981. Potential for geophysical experiments in large scale tests[J]. Geophysical Research Letters, 8(7): 653—656. [17] Dieterich J H.1992. Earthquake nucleation on faults with rate- and state-dependent friction[J]. Tectonophysics, 211(1-4): 115—134. [18] Dunham E M, Fascal F, Carlson J M.2003. A supershear transition mechanism for cracks[J]. Science, 299(5612): 1557—1559. [19] Ellsworth W L, Beroza G C.1995. Seismic evidence for an earthquake nucleation phase[J]. Science, 268(5212): 851—855. [20] Ji Y, Hall S A, Baud P, et al. 2015. Characterization of pore structure and strain localization in Majella limestone by X-ray computed tomography and digital image correlation[J]. Geophysical Journal International, 200(2): 701—719. [21] Kato N K, Yamamoto, Hirasawa T.1994. Microfracture processes in the breakdown zone during dynamic shear rupture inferred from laboratory observation of near-fault high frequency strong motion[J]. Pure and Applied Geophysics, 142(3-4): 713—734. [22] McLaskey G C, Kilgore B D.2013. Foreshocks during the nucleation of stick-slip instability[J]. Journal of Geophysical Research, 118(6): 2982—2997. [23] McLaskey G C, Kilgore B D, Lockner D A, et al. 2014a. Laboratory generated M6 earthquakes[J]. Pure and Applied Geophysics, 171(10): 2601—2615. [24] McLaskey G C, Kilgore B D, Beeler N M.2015. Slip-pulse rupture behavior on a 2m granite fault[J]. Geophysical Research Letters, 42(17): 7039—7045. [25] McLaskey G C, Lockner D A.2014b. Preslip and cascade processes initiating laboratory stick slip[J]. Journal of Geophysical Research: Solid Earth, 119(8): 6323—6336. [26] Mello M, Bhat H S, Rosakis A J, et al. 2010. Identifying the unique ground motion signatures of supershear earthquakes theory and experiments[J]. Tectonophysics, 493(3-4): 297—326. [27] Ohnaka M.1993. Critical size of the nucleation zone of earthquake rupture inferred from immediate foreshock activity[J]. Journal of Physics of the Earth, 41(1): 45—56. [28] Ohnaka M, Kuwahara Y, Yamamoto K, et al. 1986. Dynamic breakdown processes and the generating mechanism for high-frequency elastic radiation during stick-slip instabilities[J]. Earthquake Source Mechanics, 37:13—24. [29] Ohnaka M, Yamashita T.1989. A cohesive zone model for dynamic shear faulting based on experimentally inferred constitutive relation and strong motion source parameters[J]. Journal of Geophysics Research: Solid Earth, 94(B4): 4089—4104. [30] Okubo P G, Dieterich J H.1981. Fracture energy of stick-slip events in a large scale biaxial experiment[J]. Geophysical Research Letter, 8(8): 887—890. [31] Okubo P G, Dieterich J H.1984. Effects of physical fault properties on frictional instabilities produced on simulated faults[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5817—5827. [32] Rosakis A J.2002. Intersonic shear cracks and fault ruptures[J]. Advances in Physics, 51(4): 1189—1257. [33] Rosakis A J, Samudrala O, Coker D.1999. Cracks faster than the shear wave speed[J]. Science, 284(5418): 1337—1340. [34] Rosakis A J, Samudrala O, Coker D.2000. Intersonic shear crack growth along weak planes[J]. Material Research Innovations, 3(4): 236—243. [35] Roy M, Marone C.1996. Earthquake nucleation on model faults with rate- and state-dependent friction: Effects of inertia[J]. Journal of Geophysical Research: Solid Earth, 101(B6): 13919—13932. [36] Scholz C H.1972. Static fatigue of quartz[J]. Journal of Geophysical Research, 77(11): 2104—2114, . [37] Xia K W, Huang S, Marone C.2013. Laboratory observation of acoustic fluidization in granular fault gouge and implications for dynamic weakening of earthquake faults[J]. Geochemistry, Geophysics, Geosystems, 14(4): 1012—1022. [38] Xia K W, Rosakis A J, Kanamori H.2004. Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition[J]. Science, 303(5665): 1859—1861. [39] Xia K W, Rosakis A J, Kanamori H, et al. 2005. Laboratory earthquakes along inhomogeneous faults: Directionality and supershear[J]. Science, 308(5722): 681—684. [40] Zhuo Y Q, Guo Y S, Ji Y T, et al. 2013. Slip synergism of planar strike-slip fault during meta-instable state: Experimental research based on digital image correlation analysis[J]. Science China: Earth Sciences, 56(11): 1881—1887. |