[1] 常印佛, 董树文, 黄德志. 1996. 论中—下扬子 “一盖多底”格局与演化[J]. 火山地质与矿产, 17(1-2): 1—15. CHANG Yin-fo, DONG Shu-wen, HUANG De-zhi.1996. On tectonics of “poly-basement with one cover”in Middle-Lower Yangtze craton, China[J]. Volcanology and Mineral Resources, 17(1-2): 1—15(in Chinese). [2] 常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铁铜成矿带 [M]. 北京: 地质出版社: 1—379. CHANG Yin-fo, LIU Xiang-pei, WU Yan-chang. 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River [M]. Geological Publishing House, Beijing: 1—379(in Chinese). [3] 常印佛, 周涛发, 范裕. 2012. 复合成矿与构造转换: 以长江中下游成矿带为例[J]. 岩石学报, 28(10): 3067—3075. CHANG Yin-fo, ZHOU Tao-fa, FAN Yu.2012. Polygenetic compound mineralization and tectonic evolution: Study in the Middle-Lower Yangtze River valley metallogenic belt[J]. Acta Petrologica Sinica, 28(10): 3067—3075(in Chinese). [4] 陈颙, 陈运泰. 1974. 晋中南地区地壳结构的初步研究[J]. 地球物理学报, 17(3): 186—199. CHEN Yong, CHEN Yun-tai.1974. A preliminary research on crustal velocity in central southern region of Shanxi[J]. Chinese Journal of Geophysics, 17(3): 186—199(in Chinese). [5] 陈颙, 王宝善, 姚华建. 2017. 大陆地壳结构的气枪震源探测及其应用[J]. 中国科学(D辑), 47(10): 1153—1165. CHEN Yong, WANG Bao-shan, YAO Hua-jian.2017. Seismic airgun exploration of continental crustal structures[J]. Science in China(Ser D), 47(10): 1739—1751. [6] 董树文, 高锐, 吕庆田, 等. 2009. 庐江—枞阳矿集区深部结构与成矿[J]. 地球学报, 30(3): 279—284. DONG Shu-wen, GAO Rui, LÜ Qing-tian, et al. 2009. Deep structure and ore-forming in Lujiang-Zongyang ore concentrated area[J]. Acta Geoscientica Sinica, 30(3): 279—284(in Chinese). [7] 董树文, 马立成, 刘刚, 等. 2011. 论长江中下游成矿动力学[J]. 地质学报, 85(5): 612—625. DONG Shu-wen, MA Li-cheng, LIU Gang, et al. 2011. On dynamics of the metallogenic belt of middle-lower reaches of Yangtze River, eastern China[J]. Acta Geologica Sinica, 85(5): 612—625(in Chinese). [8] 董树文, 项怀顺, 高锐, 等. 2010. 长江中下游庐江—枞阳火山岩矿集区深部结构与成矿作用[J]. 岩石学报, 26(9): 2529—2542. DONG Shu-wen, XIANG Huai-shun, GAO Rui, et al. 2010. Deep structure and ore formation within Lujiang-Zongyang volcanic ore concentrated area in middle to lower reaches of Yangtze River[J]. Acta Petrologica Sinica, 26(9): 2529—2542(in Chinese). [9] 董树文, 张岳桥, 龙长兴, 等. 2007. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 81(11): 1449—1461. DONG Shu-wen, ZHANG Yue-qiao, LONG Chang-xing, et al. 2007. Jurassic tectonic revolution in China and new interpretation of the Yanshan Movement[J]. Acta Geologica Sinica, 81(11): 1449—1461(in Chinese). [10] 段永红, 张先康, 杨卓欣. 2002. 帕米尔东北侧基底结构研究[J]. 地震学报, 24(4): 378—384. DUAN Yong-hong, ZHANG Xian-kang, YANG Zhuo-xin.2002. Study on basement structures of the northeast Pamirs[J]. Acta Seismologica Sinica, 24(4): 378—384(in Chinese). [11] 刘博, 李三忠, 王鹏程. 2018. 长江中下游深部构造及其中生代成矿动力学模式[J]. 岩石学报, 34(3): 799—812. LIU Bo, LI San-zhong, WANG Peng-cheng, et al. 2018. Deep-seated structural styles and Mesozoic metallogenic dynamic model in the Middle-Lower Yangtze region, China[J]. Acta Petrologica Sinica, 34(3): 799—812(in Chinese). [12] 刘刚, 董树文, 马立成, 等. 2016. 长江中下游地区基底与成矿[J]. 地质学报, 90(9): 2258—2275. LIU Gang, DONG Shu-wen, MA Li-cheng, et al. 2016. Basement and metallogeny belt of the Middle-Lower Yangtze River, eastern China[J]. Acta Geologica Sinica, 90(9): 2258—2275(in Chinese). [13] 刘湘培, 常印佛, 吴言昌. 1988. 论长江中下游地区成矿条件和成矿规律[J]. 地质学报, 62(2): 167—177. LIU Xiang-pei, CHANG Yin-fo, WU Yan-chang.1988. Metallogenic conditions and regularities in the middle and lower reaches of the Changjiang River[J]. Acta Geologica Sinica, 62(2): 167—177(in Chinese). [14] 吕庆田, 董树文, 史大年, 等. 2014. 长江中下游成矿带岩石圈结构与成矿动力学模型: 深部探测(SinoProbe)综述[J]. 岩石学报, 30(4): 889—906. LÜ Qing-tian, DONG Shu-wen, SHI Da-nian, et al. 2014. Lithosphere architecture and geodynamic model of middle and lower reaches of Yangtze metallogenic belt: A review from SinoProbe[J]. Acta Petrologica Sinica, 30(4): 889—906(in Chinese). [15] 吕庆田, 侯增谦, 赵金花, 等. 2003. 深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J]. 中国科学(D辑), 33(5): 442—449. LÜ Qing-tian, HOU Zeng-qian, ZHAO Jin-hua, et al. 2003. Complex crustal structure in Tongling ore concentration area revealed by deep seismic reflection section[J]. Science in China(Ser D), 33(5): 442—449(in Chinese). [16] 吕庆田, 刘振东, 董树文, 等. 2015. “长江深断裂带” 的构造性质: 深地震反射证据[J]. 地球物理学报, 58(12): 4344—4359. LÜ Qing-tian, LIU Zhen-dong, DONG Shu-wen, et al. 2015. The nature of Yangtze River deep fault zone: Evidence from deep seismic data[J]. Chinese Journal of Geophysics, 58(12): 4344—4359(in Chinese). [17] 秦大正, 刘昌森, 丁颂华, 等. 1983. 长江断裂带东延问题及裂谷特性的讨论[J]. 地震地质, 5(2): 69—78. QIN Da-zheng, LIU Chang-sen, DING Song-hua, et al. 1983. Research on the extending to the east of the Yangtze fault zone and its characteristics of rifting[J]. Seismology and Geology, 5(2): 69—78(in Chinese). [18] 史大年, 吕庆田, 徐文艺, 等. 2012. 长江中下游成矿带及邻区地壳结构: MASH 成矿过程的 P 波接收函数成像证据?[J]. 地质学报, 86(3): 389—399. SHI Da-nian, LÜ Qing-tian, XU Wen-yi, et al. 2012. Crustal structures beneath the mid-lower Yangtze metallogenic belt and its adjacent regions in eastern China: Evidences from P-wave receiver function imaging for a MASH metallization process?[J]. Acta Geologica Sinica, 86(3): 389—399(in Chinese). [19] 宋方敏, 邓志辉, 马晓静, 等. 2008. 长江谷地安庆—马鞍山段新构造和断裂活动特征[J]. 地震地质, 30(1): 99—110. SONG Fang-min, DENG Zhi-hui, MA Xiao-jing, et al. 2008. Neotectonics and fault activity in the Anqing-Ma'anshan section of the Changjiang River valley[J]. Seismology and Geology, 30(1): 99—110(in Chinese). [20] 汤家富, 陆三明, 李建设, 等. 2010. 安徽庐枞火山岩盆地与邻区基底构造变形, 形成演化及其对矿床分布的控制[J]. 岩石学报, 26(9): 2587—2597. TANG Jia-fu, LU San-ming, LI Jian-she, et al. 2010. The basement structural deformation, evolution and its control action on deposit distribution in Luzong volcanic basin and its adjacent area in Anhui Province, China[J]. Acta Petrologica Sinica, 26(9): 2587—2597(in Chinese). [21] 田晓峰, 王夫运, 刘宝峰, 等. 2016. 马鞍山—铜陵—安庆长江沿线上地壳速度结构成像[J]. 中国地震, 32(2): 390—396. TIAN Xiao-feng, WANG Fu-yun, LIU Bao-feng, et al. 2016. Upper crustal velocity structure along the Yangtze River from Ma'anshan to Anqing[J]. Earthquake Research in China, 32(2): 390—396(in Chinese). [22] 吴怡, 嘉世旭, 段永红, 等. 2006. 地震折射波法在郑州市西区浅层勘探中的应用[J]. 地震地质, 28(1): 84—92. WU Yi, JIA Shi-xu, DUAN Yong-hong, et al. 2006. The application of refraction method to shallow exploration of western Zhengzhou[J]. Seismology and Geology, 28(1): 84—92(in Chinese). [23] 徐涛, 张忠杰, 田小波, 等. 2013. 长江中下游成矿带及邻区地壳速度结构: 来自利辛-宜兴宽角地震资料的约束[J]. 岩石学报, 30(4): 918—930. XU Tao, ZHANG Zhong-jie, TIAN Xiao-bo, et al. 2013. Crustal structure beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Constraints from active source seismic experiment along the Lixin to Yixing profile in East China[J]. Acta Petrologica Sinica, 30(4): 918—930(in Chinese). [24] 薛怀民, 王一鹏, 冀泽阳. 2016. 长江中下游怀宁盆地火山杂岩锆石定年及其地质意义[J]. 地质论评, 62(5): 1166—1184. XUE Huai-min, WANG Yi-peng, JI Ze-yang.2016. LA-ICP-MS zircon U-Pb ages of the volcanic complex in the Huaining Basin, Middle-Lower Yangtze region, and geological significance[J]. Geological Review, 62(5): 1166—1184(in Chinese). [25] 杨卓欣, 王夫运, 段永红, 等. 2011. 川滇活动地块东南边界基底结构: 盐源—西昌—昭觉—马湖深地震测深剖面结果[J]. 地震学报, 33(4): 431—442. YANG Zhuo-xin, WANG Fu-yun, DUAN Yong-hong, et al. 2011. Basement structure of southeastern boundary region of Sichuan-Yunnan active block: Analysis result of Yanyuan-Xichang-Zhaojue-Mahu deep seismic sounding profiles[J]. Acta Seismologica Sinica, 33(4): 431—442(in Chinese). [26] 张明辉, 徐涛, 吕庆田, 等. 2015. 长江中下游成矿带及邻区三维 Moho 面结构: 来自人工源宽角地震资料的约束[J]. 地球物理学报, 58(12): 4360—4372. ZHANG Ming-hui, XU Tao, LÜ Qing-tian, et al. 2015. 3D Moho depth beneath the Middle-Lower Yangtze metallogenic belt and its surrounding areas: Insight from the wide angle seismic data[J]. Chinese Journal of Geophysics, 58(12): 4360—4372(in Chinese). [27] 周涛发, 范裕, 袁峰, 等. 2011. 长江中下游成矿带火山岩盆地的成岩成矿作用[J]. 地质学报, 85(5): 712—730. ZHOU Tao-fa, FAN Yu, YUAN Feng, et al. 2011. Petrogensis and metallogeny study of the volcanic basins in the Middle and Lower Yangtze metallogenic belt[J]. Acta Geologica Sinica, 85(5): 712—730(in Chinese). [28] Bevington P R.1969. Data Reduction and Error Analysis for the Physical Sciences[M]. McGraw-Hill Book Company, New York. [29] Cerveny V, Klimes L, Psencık I. 1988. Complete Seismic Ray Tracing in Three Dimensional Structures [M]. Academic Press, New York:89—168. [30] Cerveny V, Ravindra R. 1971. Theory of Seismic Head Waves [M]. University of Toronto Press, Toronto: 1—312. [31] Chen Y, Zhang X K, Qiu X L, et al. 2007. A new way to generate seismic waves for continental crustal exploration[J]. Chinese Science Bulletin, 52(16): 2264—2268. [32] Hearn T M, Clayton R W.1986. Lateral velocity variations in southern California. I. Results for the upper crust from Pg waves[J]. Bulletin of the Seismological Society of America, 76(2): 495—509. [33] Hole J A, Clowes R M, Ellis R M.1992. Interface inversion using broadside seismic refraction data and three-dimensional traveltime calculations[J]. Journal of Geophysical Research, 97(B3): 3417—3429. [34] Magnani M B, Zelt C A, Levander A, et al. 2009. Crustal structure of the South American-Caribbean plate boundary at 67°W from controlled source seismic data[J]. Journal of Geophysics Research, 114(B2): B02312. [35] Malinowski M, Grad M, Guterch A, et al. 2008. Three-dimensional seismic modelling of the crustal structure between East European Craton and the Carpathians in SE Poland based on CELEBRATION 2000 data[J]. Geophysical Journal International, 173(2): 546—565. [36] Scheidegger A E, Willmore P L.1957. The use of a least squares method for the interpretation of data from seismic surveys[J]. Geophysics, 22(1): 9—21. [37] Schimmel M, Gallart J.2007. Frequency-dependent phase coherence for noise suppression in seismic array data[J]. Journal of Geophysical Research, 112(B4): B04303. [38] She Y Y, Yao H J, Zhai Q S, et al. 2018. Shallow crustal structure of the middle-lower Yangtze River region in eastern China from surface-wave tomography of a large volume airgun-shot experiment[J]. Seismological Research Letters, 89(3): 1003—1013. [39] Tian X F, Wang B S, Yao H J, et al. 2018. 3D seismic refraction travel-time tomography beneath the middle-lower Yangtze River region[J]. Seismological Research Letters, 89(3): 992—1002. [40] Tian X F, Zelt C A, Wang F Y, et al. 2014. Crust structure of the North China Craton from a long-range seismic wide-angle reflection/refraction data[J]. Tectonophysics, 634:237—245. [41] Valenta J, Dohnal J.2007. 3D seismic travel time surveying a comparison of the time-term method and tomography(an example from an archaeological site)[J]. Journal of Applied Geophysics, 63(1): 46—58. [42] Wang B S, Ge H K, Yang W, et al. 2012. Transmitting seismic station monitors fault zone at depth[J]. Eos, Transactions American Geophysical Union, 93(5): 49—50. [43] Wang B S, Wang W T, Ge H K, et al. 2011. Monitoring subsurface changes with active sources[J]. Advances in Earth Science, 26(3): 249—256. [44] Yang W, Ge H K, Wang B S, et al. 2014. Active source monitoring at the Wenchuan fault zone: Coseismic velocity change associated with aftershock event and its implication[J]. Earthquake Science, 27(6): 599—606. [45] Zelt C A.1998. Lateral velocity resolution from 3-D seismic refraction data[J]. Geophysical Journal International, 135(3): 1101—1112. [46] Zelt C A, Azara A, Levander A.2006. 3-D seismic refraction traveltime tomography at a shallow groundwater contamination site[J]. Geophysics, 71(5): 67—78. [47] Zelt C A, Barton P J.1998. Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin[J]. Journal of Geophysical Research, 103(4): 7187—7210. [48] Zelt C A, Forsyth D A, Milkereit B, et al. 1994. Seismic structure of the Central Metasedimentary Belt, southern Grenville Province[J]. Canadian Journal of Earth Sciences, 31(2): 243—254. [49] Zelt C A, Smith R B.1992. Seismic traveltime inversion for 2-D crustal velocity structure[J]. Geophysical Journal International, 108(1): 16—34. [50] Zeng X F, Thurber C H.2016. A graphics processing unit implementation of time-frequency phase-weighted stacking[J]. Seismological Research Letters, 87(2): 358—362. [51] Zhang H, Thurber C H.2003. Double difference tomography: The method and its application to the Hayward Fault, California[J]. Bulletin of the Seismological Society of America, 93(5): 1875—1889. |