[1] 常远, 周祖翼. 2010. 利用低温热年代学数据计算剥露速率的基本方法[J]. 科技导报, 28(21): 86—94. CHANG Yuan, ZHOU Zu-yi.2010. Basic methods to inverse exhumation rates using low-temperature thermochronological data[J]. Science & Technology Review, 28(21): 86—94(in Chinese). [2] 陈文彬, 徐锡伟. 2006. 阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延[J]. 地震地质, 28(2): 319—324. doi: 10.3969/j.issn.0253-4967.2006.02.015. CHEN Wen-bin, XU Xi-wei.2006. Sinistral strike-slip faults along the southern Alashan margin and eastwards extending of the Altun Fault[J]. Seismology and Geology, 28(2): 319—324(in Chinese). [3] 方小敏, 赵志军, 李吉均, 等. 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J]. 中国科学(D辑), 34(2): 97—106. FANG Xiao-min, ZHAO Zhi-jun, LI Ji-jun, et al.2004. Stratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan plateau uplift[J]. Science in China(Ser D), 34(2): 97—106(in Chinese). [4] 甘肃省地质矿产局. 1989. 甘肃省区域地质志 [M]. 北京: 地质出版社. Geology and Mineral Resources Bureau of Gansu Province. 1989. Regional Geology of Gansu Province [M]. Geological Publishing House, Beijing(in Chinese). [5] 高锐, 成湘洲, 丁谦. 1995. 格尔木-额济纳旗地学断面地球动力学模型初探[J]. 地球物理学报, 38(S2): 3—14. GAO Rui, CHENG Xiang-zhou, DING Qian.1995. Preliminary geodynamic model of Golmud-Ejin Qi geoscience transect[J]. Acta Geophysica Sinica, 38(S2): 3—14(in Chinese). [6] 国家地震局地质研究所, 国家地震局兰州地震研究所. 1993. 祁连山-河西走廊活动断裂系 [M]. 北京: 地震出版社, 148—174. Institute of Geology, China Earthquake Administration, Lanzhou Institute of Seismology, China Earthquake Administration. 1993. The Qilian Mountain-Hexi Corridor Active Fault System [M]. Seismological Press, Beijing, 148—174(in Chinese). [7] 黄兴富, 高锐, 郭晓玉, 等. 2018. 青藏高原东北缘祁连山与酒西盆地结合部深部地壳结构及其构造意义[J]. 地球物理学报, 61(9): 3640—3650. HUANG Xing-fu, GAO Rui, GUO Xiao-yu, et al.2018. Deep crustal structure beneath the junction of the Qilian Shan and Jiuxi Basin in the northeastern margin of the Tibetan plateau and its tectonic implications[J]. Chinese Journal of Geophysics, 61(9): 3610—3650(in Chinese). [8] 金胜, 张乐天, 金永吉, 等. 2012. 青藏高原东北部合作-大井剖面地壳电性结构研究[J]. 地球物理学报, 55(12): 3979—3990. JIN Sheng, ZHANG Le-tian, JIN Yong-ji, et al.2012. Crustal electrical structure along the Hezuo-Dajing profile across the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics, 55(12): 3979—3990(in Chinese). [9] 李翠, 房玉涛, 李道勇, 等. 2011. 潮水盆地阿右旗坳陷构造特征及其演化[J]. 山东国土资源, 27(11): 14—16. LI Cui, FANG Yu-tao, LI Dao-yong, et al.2011. Tectonic characteristics and evolution of Ayouqi Banner Depression in Tidal Basin[J]. Shandong Land and Resource, 27(11): 14—16(in Chinese). [10] 李奋其, 王成善, 朱利东, 等. 2002. 区域挤压体制下盆-山耦合关系探讨——以河西走廊和北祁连山为例[J]. 沉积与特提斯地质, 22(4): 17—25. LI Fen-qi, WANG Cheng-shan, ZHU Li-dong, et al.2002. The basin-range coupling under the regional compressional regimes: Examples from the Hexi Corridor Basin and North Qilian Mountains[J]. Sedimentary Geology and Tethyan Geology, 22(4): 17—25(in Chinese). [11] 俞晶星. 2016. 阿拉善地块南部构造活动及其对周边地块相互作用的响应 [D]. 北京: 中国地震局地质研究所: 1—124. YU Jing-xing.2016. Active tectonics in the southern Gobi-Alashan block and its response to the interactions of the adjacent crustal blocks [D]. Institute of Geology, China Earthquake Administration, Beijing: 1—124(in Chinese). [12] 袁道阳. 2003. 青藏高原东北部晚新生代以来的构造变形特征与时空演化 [D]. 北京: 中国地震局地质研究所: 1—173. YUAN Dao-yang.2003. Tectonic deformation features and space-time evolution in northeastern margin of the Qinghai-Tibetan plateau since the late Cenozoic time [D]. Institute of Geology, China Earthquake Administration, Beijing: 1—173(in Chinese). [13] 张进, 李锦轶, 李彦峰, 等. 2007. 阿拉善地块新生代构造作用——兼论阿尔金断裂新生代东向延伸问题[J]. 地质学报, 81(11): 1481—1497. ZHANG Jin, LI Jin-zhi, LI Yan-feng, et al.2007. The Cenozoic deformation of the Alxa Block in Central Asia: Question on the northeastern extension of the Altyn Tagh Fault in Cenozoic time[J]. Acta Geological Sinica, 81(11): 1481—1497(in Chinese). [14] 赵宏波, 何昕睿, 王筱烨, 等. 2013. 潮水盆地构造特征[J]. 岩性油气藏, 25(2): 36—40. ZHAO Hong-bo, HE Xin-rui, WANG Xiao-ye, et al.2013. Structural characteristics of Chaoshui Basin[J]. Lithologic Reservoirs, 25(2): 36—40(in Chinese). [15] 郑文俊, 张竹琪, 张培震, 等. 2013. 1954年山丹7<inline-graphic xlink:href="0253-4967-42-2-472/img_9.jpg"/>级地震的孕震构造和发震机制探讨[J]. 地球物理学报, 56(3): 916—928. ZHENG Wen-jun, ZHANG Zhu-qi, ZHANG Pei-zhen, et al.2013. Seismogenic structure and mechanism of the 1954 M7<inline-graphic xlink:href="0253-4967-42-2-472/img_10.jpg"/> Shandan earthquake, Gansu Province, western China[J]. Chinese Journal of Geophysics, 56(3): 916—928(in Chinese). [16] Bovet P M, Ritts B D, Gehrels G, et al.2009. Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China[J]. American Journal of Science, 309(4): 290—329. [17] Burbank D W, Blythe A E, Putkonen J, et al.2003. Decoupling of erosion and precipitation in the Himalayas[J]. Nature, 426(6967): 652—655. [18] Clark M K, Farley K A, Zheng D W, et al.2010. Early Cenozoic faulting of the northern Tibetan plateau margin from apatite(U-Th)/He ages[J]. Earth and Planetary Science Letter, 296(1-2): 78—88. [19] Darby B J, Ritts B D, Yue Y J, et al.2005. Did the Altyn Tagh Fault extend beyond the Tibetan plateau?[J]. Earth and Planetary Science Letters, 240(2): 425—435. [20] Dupont-Nivet G, Krijgsman W, Langereis C G, et al.2007. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 445(7128): 635—638. [21] Duvall A R, Clark M K, Van der Pluijm B A, et al.2011. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letter, 304(3-4): 520—526. [22] Fang X M, Zhao Z J, Li J J, et al.2005. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan plateau uplift[J]. Science in China(Ser D), 48(7): 1040—1051. [23] Fang X M, Fang Y H, Zan J B, et al.2019. Cenozoic magnetostratigraphy of the Xining Basin, NE Tibetan plateau, and its constraints on paleontological, sedimentological and tectonomorphological evolution[J]. Earth-Science Reviews, 190:460—485. [24] Farley K A, Wolf R A, Silver L T.1996. The effects of long alpha-stopping distances on(U-Th)/He ages[J]. Geochimica et Cosmochimica Acta, 60(21): 4223—4229. [25] Farley K A, Stockli D F. 2002.(U-Th)/He dating of phosphates: Apatite, monazite, and xenotime[J]. Reviews in Mineralogy & Geochemistry, 48(1): 559—577. [26] Flowers R M, Ketcham R A, Shuster D L, et al.2009. Apatite(U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 73(8): 2347—2365. [27] Gallagher K.2012. Transdimensional inverse thermal history modeling for quantitative thermochronology[J]. Journal of Geophysical Research Atmospheres, 117(B2): B02408. [28] Gao R, Wang H Y, Yin A, et al.2013. Tectonic development of the northeastern Tibetan plateau as constrained by high-resolution deep seismic-reflection data[J]. Lithosphere, 5(6): 555—574. [29] George A D, Marshallsea S J, Wyrwoll K H, et al.2001. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geology, 29(10): 939—942. [30] Graham S A, Chamberlain C P, Yue Y J, et al.2005. Stable isotope records of Cenozoic climate and topography, Tibetan plateau and Tarim Basin[J]. American Journal of Science, 305(2): 101—118. [31] Hetzel R, Tao M X, Stokes S, et al.2004. Late Pleistocene/Holocene slip rate of the Zhangye thrust(Qilian Shan, China)and implications for the active growth of the northeastern Tibetan plateau[J]. Tectonics, 23(6): TC6006. [32] Jolivet M, Brunel M, Seward D, et al.2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints[J]. Tectonophysics, 343(1-2): 111—134. [33] Ketcham R A.2005. Forward and inverse modeling of low-temperature thermochronometry data[J]. Reviews in Mineralogy and Geochemistry, 58(1): 275—314. [34] Lease R O, Burbank D W, Clark M K, et al.2011. Middle Miocene reorganization of deformation along the northeastern Tibetan plateau[J]. Geology, 39(4): 359—362. [35] Lei Q Y, Zhang P Z, Zheng W J, et al.2016. Dextral strike-slip of Sanguankou-Niushoushan fault zone and extension of arc tectonic belt in the northeastern margin of the Tibet Plateau[J]. Science China Earth Sciences, 59(5): 1025—1040. [36] Li B, Chen X H, Zuza A V, et al.2019. Cenozoic cooling history of the North Qilian Shan, northern Tibetan plateau, and the initiation of the Haiyuan Fault: Constraints from apatite- and zircon-fission track thermochronology[J]. Tectonophysics, 751:109—124. [37] Liu Z, Hong H, Wang C, et al.2019. Oligocene-Miocene(28~13Ma) climato-tectonic evolution of the northeastern Qinghai-Tibetan plateau evidenced by mineralogical and geochemical records of the Xunhua Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 514:98—108. [38] Métivier F, Gaudemer Y, Tapponnier P, et al.1998. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor Basins, China[J]. Tectonics, 17(6): 823—842. [39] Meyer B, Tapponnier P, Bourjot L, et al.1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 135(1): 1—47. [40] Palumbo L, Hetzel R, Tao M X, et al.2009. Deciphering the rate of mountain growth during topographic pre-steady state: An example from the NE margin of the Tibetan plateau[J]. Tectonics, 28(4): TC4017. [41] Palumbo L, Hetzel R, Tao M X, et al.2010. Topographic and lithologic control on catchment-wide denudation rates derived from cosmogenic10Be in two mountain ranges at the margin of NE Tibet[J]. Geomorphology, 117(1-2): 130—142. [42] Pan B T, Li Q Y, Hu X F, et al.2013. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, northeastern margin of the Tibetan plateau: Evidence from apatite fission-track analysis[J]. Terra Nova, 25(6): 431—438. [43] Pang J Z, Yu J X, Zheng D W, et al.2019a. Constraints of new apatite fission-track ages on the tectonic pattern and geomorphic development of the northern margin of the Tibetan plateau[J]. Journal of Asian Earth Sciences, 181(1): 103909. [44] Pang J Z, Yu J X, Zheng D W, et al.2019b. Neogene expansion of the Qilian Shan, north Tibet: Implications for the dynamic evolution of the Tibetan plateau[J]. Tectonics, 38(3): 1018—1032. [45] Reiners P W, Brandon M T.2006. Using thermochronology to understand orogenic erosion[J]. Annual Review of Earth and Planetary Sciences, 34(1): 419—466. [46] Shuster W D, Bonta J, Thurston H W, et al.2005. Impacts of impervious surface on watershed hydrology: A review[J]. Urban Water Journal, 2(4): 263—275. [47] Song C H, Fang X M, Li J J, et al.2001. Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan plateau since 13Ma BP[J]. Science in China(Ser D), 44(S1): 192—202. [48] Wang W T, Zhang P Z, Zheng D W, et al.2014. Late Cenozoic tectonic deformation of the Haiyuan fault zone in the northeastern margin of the Tibetan plateau[J]. Earth Science Frontiers, 21(4): 266—274. [49] Wang W T, Zhang P Z, Pang J Z, et al.2016a. The Cenozoic growth of the Qilian Shan in the northeastern Tibetan plateau: A sedimentary archive from the Jiuxi Basin[J]. Journal of Geophysical Research: Solid Earth, 121(4): 2235—2257. [50] Wang W T, Zhang P Z, Zheng W J, et al.2016b. Uplift-driven sediment redness decrease at~16.5Ma in the Yumen Basin along the northeastern Tibetan plateau[J]. Scientific Reports, 6:29568. [51] Wang X M, Wang B Y, Qiu Z X, et al.2003. Danghe area(western Gansu, China)biostratigraphy and implications for depositional history and tectonics of northern Tibetan plateau[J]. Earth and Planetary Science Letters, 208(3-4): 253—269. [52] Wang Y, Zhang P Z, Schoenbohm L M, et al.2018. Two-phase exhumation along major shear zones in the SE Tibetan plateau in the late Cenozoic[J]. Tectonics, 37(8): 2675—2694. [53] Wang Y Z, Zheng D W, Pang J Z, et al.2018. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan plateau[J]. Geomorphology, 38:118—128. [54] Ye Z, Gao R, Li Q S, et al.2015. Seismic evidence for the North China plate underthrusting beneath northeastern Tibet and its implications for plateau growth[J]. Earth and Planetary Science Letters, 426:109—117. [55] Yu J X, Zheng W J, Zhang P Z, et al.2017. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China[J]. Tectonophysics, 721:28—44. [56] Yu J X, Pang J Z, Wang Y Z, et al.2019. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan plateau[J]. Geosphere, 15(2): 423—432. [57] Yuan D Y, Ge W P, Chen Z W, et al.2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358—1370. [58] Zhang B H, Zhang J, Wang Y N, et al.2017. Late Mesozoic-Cenozoic exhumation of the northern Hexi Corridor: Constrained by apatite fission track ages of the Longshou Shan[J]. Acta Geologica Sinica(English Edition), 91(5): 1624—1643. [59] Zhang J, Wang Y N, Zhang B H, et al.2015. Evolution of the NE Qinghai-tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China[J]. Journal of Asian Earth Science, 97(part A): 10—23. [60] Zhang P Z, Molnar P, Xu X W.2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan plateau[J]. Tectonics, 26(5): TC5010. [61] Zheng D W, Zhang P Z, Wan J L, et al.2006. Rapid exhumation at ~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan plateau margin[J]. Earth and Planetary Science Letters, 248(1-2): 198—208. [62] Zheng D W, Clark M K, Zhang P, et al.2010. Erosion, fault initiation and topographic growth of the North Qilian Shan(northern Tibetan plateau)[J]. Geosphere, 6(6): 937—941. [63] Zheng D W, Wang W T, Wan J L, et al.2017. Progressive northward growth of the northern Qilian Shan-Hexi Corridor(northeastern Tibet)during the Cenozoic[J]. Lithosphere, 9(3): 408—416. [64] Zheng W J, Zhang H P, Zhang P Z, et al.2013a. Late Quaternary slip rates of the thrust faults in western Hexi Corridor(northern Qilian Shan, China)and their implications for northeastward growth of the Tibetan plateau[J]. Geosphere, 9(2): 342—354. [65] Zheng W J, Zhang P Z, Ge W P, et al.2013b. Late Quaternary slip rate of the South Heli Shan Fault(northern Hexi Corridor, NW China)and its implications for northeastward growth of the Tibetan plateau[J]. Tectonics, 32(2): 271—293. [66] Zhuang G S, Johnstone S A, Hourigan J, et al.2018. Understanding the geologic evolution of northern Tibetan plateau with multiple thermochronometers[J]. Gondwana Research, 58:195—210. |