地震地质 ›› 2020, Vol. 42 ›› Issue (1): 163-181.DOI: 10.3969/j.issn.0253-4967.2020.01.011
收稿日期:
2019-04-12
出版日期:
2020-02-20
发布日期:
2020-06-17
通讯作者:
葛伟鹏
作者简介:
〔作者简介〕 魏聪敏, 女, 1994年生, 现为中国地震局兰州地震研究所固体地球物理学专业在读硕士研究生, 研究方向为GPS地壳形变观测, 电话: 13051467088, E-mail: 15554186885@163.com。
基金资助:
WEI Cong-min1)(), GE Wei-peng1,2)(), ZHANG Bo1,2)
Received:
2019-04-12
Online:
2020-02-20
Published:
2020-06-17
摘要:
西秦岭-松潘构造结下地壳黏滞系数的定量化研究是理解青藏高原东缘及东北缘动力过程的基础。 为进一步认识该区域岩石圈动力学的演化过程, 建立下地壳流与不同时间尺度岩石圈变形特征的相互联系, 文中以下地壳管道流模型为基础, 利用地貌形态估算下地壳的黏滞系数, 探讨深部岩石圈流变学过程如何作用于上地壳形变和构造地貌特征; 同时结合GPS速度场分析现今的地壳形变, 进一步研究区域弥散构造变形过程。 结果表明: 1)若尔盖-红原盆地北侧及东北侧下地壳的黏滞系数小于东侧及东南侧; 2)下地壳流具有向NE低黏滞系数区流动的趋势, 较好地解释了该区域的造山运动过程、 弧形等高线分布及“V”形展布断裂的发育; 3)GPS数据揭示的现今地表运动方向与黏滞系数反演的下地壳历史演化方向一致, 说明下地壳与上地壳可能具有良好的耦合特征。 研究结果最终为解释不同走向和性质的断裂系发育、 造山带形成、 宏观地貌发育特征以及深入探讨青藏高原东北缘岩石圈的流变学和隆升动力学提供了依据。
中图分类号:
魏聪敏, 葛伟鹏, 张波. 利用地貌形态估算西秦岭-松潘构造结及邻区的下地壳黏滞系数[J]. 地震地质, 2020, 42(1): 163-181.
WEI Cong-min, GE Wei-peng, ZHANG Bo. ESTIMATING THE LOWER CRUSTAL VISCOSITY OF THE WESTERN QINLING-SONGPAN TECTONIC NODE AND ITS ADJACENT AREAS BY USING LANDFORM MORPHOLOGY[J]. SEISMOLOGY AND GEOLOGY, 2020, 42(1): 163-181.
图 1 西秦岭-松潘构造结的活动断裂与历史地震分布图F1西秦岭北缘断裂; F2临潭-宕昌断裂; F3迭山-光盖山断裂; F4迭部-白龙江断裂; F5塔藏断裂; F6岷江断裂;F7龙日坝断裂; F8哈南-稻畦子断裂; F9武都-康县-略阳断裂; F10两当-江洛断裂; F11日月山断裂; F12鄂拉山断裂
Fig. 1 Distribution of active faults and historical earthquakes in the western Qinling-Songpan continental tectonic node.
图 2 区域地貌和条带状剖面位置分布图橘黄色长条为本文所取的地形条带, 褐色实线为4km等高线, 红色实线为3km等高线,黄色实线为2km等高线, 绿色实线为1km等高线
Fig. 2 Regional topography and distribution of location of banded profiles.
带状剖面 | 范围/km | 长度/km | 最大/m | 最小/m | 黏滞系数范围/Pa·s | 黏滞系数估计/Pa·s | |
---|---|---|---|---|---|---|---|
A | 1 | 255<d<350 | 95 | 4 000 | 3 100 | 1019<Y<1020 | 4×1019 |
2 | 120<d<350 | 230 | 4 200 | 3 100 | 1018<Y<1019 | 4×1018 | |
B | 1 | 240<d<300 | 60 | 4 800 | 2 200 | 1020<Y<1021 | 5×1020 |
C | 1 | 60<d<350 | 290 | 4 300 | 2 000 | 1018<Y<1019 | 3×1018 |
D | 1 | 210<d<250 | 40 | 4 200 | 2 000 | 1020<Y<1021 | 6×1020 |
2 | 75<d<350 | 275 | 4 000 | 2 000 | 1018<Y<1019 | 9×1018 | |
E | 1 | 130<d<205 | 75 | 4 500 | 2 800 | 1019<Y<1020 | 3×1019 |
2 | 230<d<275 | 45 | 4 000 | 2 000 | 1020<Y<1021 | 5×1020 | |
3 | 130<d<350 | 220 | 4 500 | 2 000 | 1019<Y<1020 | 2×1019 | |
F | 1 | 100<d<175 | 75 | 4 000 | 2 700 | 1019<Y<1020 | 8×1019 |
2 | 185<d<220 | 35 | 4 000 | 2 500 | 1020<Y<1021 | 2×1020 | |
3 | 250<d<350 | 100 | 3 300 | 1 500 | 1019<Y<1020 | 5×1019 | |
4 | 185<d<350 | 165 | 4 000 | 1 500 | 1019<Y<1020 | 6×1019 | |
G | 1 | 130<d<165 | 35 | 4 400 | 3 700 | 1018<Y<1019 | 8×1018 |
2 | 185<d<235 | 50 | 4 500 | 2 700 | 1019<Y<1020 | 9×1019 | |
3 | 240<d<350 | 110 | 3 000 | 1 500 | 1019<Y<1020 | 7×1019 | |
4 | 180<d<350 | 170 | 4 500 | 1 500 | 1019<Y<1020 | 7×1019 | |
H | 1 | 180<d<210 | 30 | 4 500 | 2 700 | 1020<Y<1021 | 3×1020 |
2 | 180<d<350 | 170 | 4 500 | 1 400 | 1019<Y<1020 | 4×1019 | |
I | 1 | 190<d<280 | 90 | 4 500 | 1 500 | 1019<Y<1020 | 1×1020 |
2 | 190<d<350 | 160 | 4 500 | 800 | 1019<Y<1020 | 9×1019 |
表1 西秦岭-松潘构造结及邻区岩石圈黏滞系数估计
Table1 Approximate lithospheric viscosity estimation of the western Qinling-Songpan continental tectonic node and the adjacent regions
带状剖面 | 范围/km | 长度/km | 最大/m | 最小/m | 黏滞系数范围/Pa·s | 黏滞系数估计/Pa·s | |
---|---|---|---|---|---|---|---|
A | 1 | 255<d<350 | 95 | 4 000 | 3 100 | 1019<Y<1020 | 4×1019 |
2 | 120<d<350 | 230 | 4 200 | 3 100 | 1018<Y<1019 | 4×1018 | |
B | 1 | 240<d<300 | 60 | 4 800 | 2 200 | 1020<Y<1021 | 5×1020 |
C | 1 | 60<d<350 | 290 | 4 300 | 2 000 | 1018<Y<1019 | 3×1018 |
D | 1 | 210<d<250 | 40 | 4 200 | 2 000 | 1020<Y<1021 | 6×1020 |
2 | 75<d<350 | 275 | 4 000 | 2 000 | 1018<Y<1019 | 9×1018 | |
E | 1 | 130<d<205 | 75 | 4 500 | 2 800 | 1019<Y<1020 | 3×1019 |
2 | 230<d<275 | 45 | 4 000 | 2 000 | 1020<Y<1021 | 5×1020 | |
3 | 130<d<350 | 220 | 4 500 | 2 000 | 1019<Y<1020 | 2×1019 | |
F | 1 | 100<d<175 | 75 | 4 000 | 2 700 | 1019<Y<1020 | 8×1019 |
2 | 185<d<220 | 35 | 4 000 | 2 500 | 1020<Y<1021 | 2×1020 | |
3 | 250<d<350 | 100 | 3 300 | 1 500 | 1019<Y<1020 | 5×1019 | |
4 | 185<d<350 | 165 | 4 000 | 1 500 | 1019<Y<1020 | 6×1019 | |
G | 1 | 130<d<165 | 35 | 4 400 | 3 700 | 1018<Y<1019 | 8×1018 |
2 | 185<d<235 | 50 | 4 500 | 2 700 | 1019<Y<1020 | 9×1019 | |
3 | 240<d<350 | 110 | 3 000 | 1 500 | 1019<Y<1020 | 7×1019 | |
4 | 180<d<350 | 170 | 4 500 | 1 500 | 1019<Y<1020 | 7×1019 | |
H | 1 | 180<d<210 | 30 | 4 500 | 2 700 | 1020<Y<1021 | 3×1020 |
2 | 180<d<350 | 170 | 4 500 | 1 400 | 1019<Y<1020 | 4×1019 | |
I | 1 | 190<d<280 | 90 | 4 500 | 1 500 | 1019<Y<1020 | 1×1020 |
2 | 190<d<350 | 160 | 4 500 | 800 | 1019<Y<1020 | 9×1019 |
图 4 1999—2007年(a)与2009—2018年(b)期间相对于天水-成县块体的GPS速度场蓝色箭头为连续观测站结果, 红色箭头为流动观测站结果
Fig. 4 GPS velocity field with respect to the Tianshui-Chengxian block between 1999—2007(a) and 2009—2018(b).
图 5 西秦岭松潘构造结岩石圈三维模型绿色条带为3km等高线区域, 黑色箭头为下地壳流流动方向; 地壳结构来自深震反射及远震接收函数等结果(高锐等, 2006; Zhang et al., 2010; Yang et al., 2012; 姚志祥等, 2014; 朱介寿等, 2017)
Fig. 5 A 3D model of the lithosphere in western Qinling-Songpan continental node.
[1] | 陈洪凯, 李吉均. 1997. 白龙江流域第四纪以来地貌发育基本模式研究[J]. 重庆交通学院学报, 16(1): 15—20. |
CHEN Hong-kai, LI Ji-jun.1997. General approach on geomorphologic evolution in Bailongjiang Basin since Quaternary[J]. Journal of Chongqing Jiaotong Institute, 16(1): 15—20(in Chinese). | |
[2] | 冯希杰, 董星宏, 刘春, 等. 2005. 范家坝-临江断裂活动与1879年甘肃武都南8级地震的讨论[J]. 地震地质, 27(1): 155—163. |
FENG Xi-jie, DONG Xing-hong, LIU Chun, et al.2005. Discussion on the activity of Fanjiaba-Linjiang Fault and the south Wudu, Gansu Province M8 earthquake of 1879[J]. Seismology and Geology, 27(1): 155—163(in Chinese). | |
[3] | 高锐, 王海燕, 马永生, 等. 2006. 松潘地块若尔盖盆地与西秦岭造山带岩石圈尺度的构造关系: 深地震反射剖面探测成果[J]. 地球学报, 27(5): 411—418. |
GAO Rui, WANG Hai-yan, MA Yong-sheng, et al.2006. Tectonic relationship between the Zoige Basin of the Songpan block and the west Qinling orogen at lithosphere scale: Results of deep seismic reflection profiling[J]. Acta Geoscientica Sinica, 27(5): 411—418(in Chinese). | |
[4] | 葛伟鹏. 2013. 岷县漳县6.6级地震发震构造与区域地形地貌特征关系讨论[J]. 地震工程学报, 35(4): 840—847. |
GE Wei-peng.2013. Discussion on the relationship between regional landform and seismogenic structure of the Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal, 35(4): 840—847(in Chinese). | |
[5] | 顾功叙.1983. 中国地震目录(公元前1831年—公元1969年)[M]. 科学出版社. |
GU Gong-xu. 1983. Catalogue of Chinese Earthquakes, 1831BC—1969AD [M]. Science Press, Beijing(in Chinese). | |
[6] | 韩竹军, 向宏发, 冉勇康. 2001. 青藏高原东缘礼县-罗家堡断裂带晚更新世以来的活动性分析[J]. 地震地质, 23(1): 43—48. |
HAN Zhu-jun, XIANG Hong-fa, RAN Yong-kang.2001. Activity analysis of Lixian-Luojiapu fault zone in the east boundary of Tibetan plateau since the Late-Pleistocene[J]. Seismology and Geology, 23(1): 43—48(in Chinese). | |
[7] | 侯康明, 雷中生, 万夫岭, 等. 2005. 1879年武都南8级大地震及其同震破裂研究[J]. 中国地震, 21(3): 295—310. |
HOU Kang-ming, LEI Zhong-sheng, WAN Fu-ling, et al.2005. Research on the 1879 southern Wudu M8.0 earthquake and its coseismic ruptures[J]. Earthquake Research in China, 21(3): 295—310(in Chinese). | |
[8] | 侯明才, 李智武, 陈洪德, 等. 2012. 中—新生代龙门山的差异隆升[J]. 吉林大学学报(地球科学版), 42(1): 104—111. |
HOU Ming-cai, LI Zhi-wu, CHEN Hong-de, et al.2012. Differential uplift process of Longmen Mountain in Mesozoic-Cenozoic[J]. Journal of Jilin University(Earth Science Edition), 42(1): 104—111(in Chinese). | |
[9] | 潘保田, 高红山, 李吉均. 2002. 关于夷平面的科学问题: 兼论青藏高原夷平面[J]. 地理科学, 22(5): 520—526. |
PAN Bao-tian, GAO Hong-shan, LI Ji-jun.2002. On problems of planation surface: A discussion on the planation surface in Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica, 22(5): 520—526(in Chinese). | |
[10] | 潘佳铁, 李永华, 吴庆举, 等. 2017. 基于密集流动地震台阵的青藏高原东北缘及邻区Rayleigh波相速度层析成像[J]. 地球物理学报, 60(6): 2291—2303. |
PAN Jia-tie, LI Yong-hua, WU Qing-ju, et al.2017. Phase velocity maps of Rayleigh wave based on a dense coverage and portable seismic array in NE Tibetan plateau and its adjacent regions[J]. Chinese Journal of Geophysics, 60(6): 2291—2303(in Chinese). | |
[11] | 沈正康, 万永革, 甘卫军, 等. 2003. 东昆仑活动断裂带大地震之间的黏弹性应力触发研究[J]. 地球物理学报, 46(6): 786—795. |
SHEN Zheng-kang, WAN Yong-ge, GAN Wei-jun, et al.2003. Viscoelastic triggering among large earthquakes along the east Kunlun fault system[J]. Chinese Journal of Geophysics, 46(6): 786—795(in Chinese). | |
[12] | 宋春晖, 方小敏, 高军平, 等. 2001. 青藏高原东北部贵德盆地新生代沉积演化与构造隆升[J]. 沉积学报, 19(4): 493—500. |
SONG Chun-hui, FANG Xiao-min, GAO Jun-ping, et al.2001. Tectonic uplift and sedimentary evolution of the Guide Basin in the northeast margin of Tibetan plateau in Cenozoic Era[J]. Acta Sedimentologica Sinica, 19(4): 493—500(in Chinese). | |
[13] | 孙玉军, 董树文, 范桃园, 等. 2013. 中国大陆及邻区岩石圈三维流变结构[J]. 地球物理学报, 56(9): 2936—2946. |
SUN Yu-jun, DONG Shu-wen, FAN Tao-yuan, et al.2013. 3D rheological structure of the continental lithosphere beneath China and adjacent regions[J]. Chinese Journal of Geophysics, 56(9): 2936—2946(in Chinese). | |
[14] | 唐哲民, 郭宪璞, 乔秀夫. 2011. 龙门山中、 南段中—新生代隆升史: 来自裂变径迹的证据[J]. 岩石学报, 27(11): 3471—3478. |
TANG Zhe-min, GUO Xian-pu, QIAO Xiu-fu.2011. Uplifting history of Meso-Cenozoic era in the central-southern part of Longmenshan region: Evidence from the fission-track ages[J]. Acta Petrologica Sinica, 27(11): 3471—3478(in Chinese). | |
[15] | 万永革, 沈正康, 甘卫军, 等. 2003. 东昆仑活动断裂带大地震之间的弹性应力触发研究[J]. 西北地震学报, 25(1): 4—10. |
WAN Yong-ge, SHEN Zheng-kang, GAN Wei-jun, et al.2003. Study on the elastic stress triggering among the large earthquakes in eastern Kunlun active fault zone[J]. Northwestern Seismological Journal, 25(1): 4—10(in Chinese). | |
[16] | 王庆良, 巩守文, 张希, 等. 1997. 由1990年共和7.0级地震震后垂直形变求得的地球介质有效弛豫时间和黏滞系数[J]. 地震学报, 19(5): 480—486. |
WANG Qing-liang, GONG Shou-wen, ZHANG Xi, et al.1997. Effective relaxation time and viscosity of the earth inferred from the postseismic vertical deformations of the 1990 MS7.0 Gonghe earthquake[J]. Acta Seismologica Sinica, 19(5): 480—486(in Chinese). | |
[17] | 王晓芳, 何建坤. 2012. 下地壳管道流动与青藏高原东缘大尺度构造地貌关系[J]. 中国科学(D辑), 42(4): 505—512. |
WANG Xiao-fang, HE Jian-kun.2012. Channel flow of the lower crust and its relation to large-scale tectonic geomorphology of the eastern Tibetan plateau[J]. Science in China(Ser D), 42(4): 505—512(in Chinese). | |
[18] | 杨辉, 滕吉文, 皮娇龙. 2013. 青藏高原通道流模型动力环境的数值模拟[J]. 地球物理学报, 56(8): 2625—2635. |
YANG Hui, TENG Ji-wen, PI Jiao-long.2013. Numerical simulation of the geodynamical condition about the channel flow model in Tibetan plateau[J]. Chinese Journal of Geophysics, 56(8): 2625—2635(in Chinese). | |
[19] | 杨文采, 侯遵泽, 徐义贤, 等. 2017. 青藏高原下地壳热变形和管道流研究[J]. 地质论评, 63(5): 1141—1152. |
YANG Wen-cai, HOU Zun-ze, XU Yi-xian, et al.2017. A study on thermal deformation and lower crust channel flows in Qinghai-Xizang(Tibet) plateau[J]. Geological Review, 63(5): 1141—1152(in Chinese). | |
[20] | 杨晓平, 冯希杰, 黄雄南, 等. 2015. 礼县-罗家堡断裂晚第四纪活动特征: 兼论1654年礼县8级地震孕震机制[J]. 地球物理学报, 58(2): 504—519. |
YANG Xiao-ping, FENG Xi-jie, HUANG Xiong-nan, et al.2015. The Late Quaternary activity characteristics of the Lixian-Luojiabu Fault: A discussion on the seismogenic mechanism of the Lixian M8 earthquake in 1654[J]. Chinese Journal of Geophysics, 58(2): 504—519(in Chinese). | |
[21] | 姚志祥, 王椿镛, 曾融生, 等. 2014. 利用接收函数方法研究西秦岭构造带及其邻区地壳结构[J]. 地震学报, 36(1): 1—19. |
YAO Zhi-xiang, WANG Chun-yong, ZENG Rong-sheng, et al.2014. Crustal structure in western Qinling tectonic belt and its adjacent regions deduced from receiver functions[J]. Acta Seismologica Sinica, 36(1): 1—19(in Chinese). | |
[22] | 尹力, 罗纲, 孙云强. 2018. 青藏高原东缘中下地壳流与地壳变形[J]. 地球物理学报, 61(10): 3933—3950. |
YIN Li, LUO Gang, SUN Yun-qiang.2018. Middle-lower crust flow and crustal deformation: Insights from a finite element modeling[J]. Chinese Journal of Geophysics, 61(10): 3933—3950(in Chinese). | |
[23] | 袁道阳, 雷中生, 何文贵, 等. 2007a. 公元前186年甘肃武都地震考证与发震构造探讨[J]. 地震学报, 29(6): 654—663. |
YUAN Dao-yang, LEI Zhong-sheng, HE Wen-gui, et al.2007a. Textual research of Wudu earthquake in 186BC in Gansu Province, China and discussion on its causative structure[J]. Acta Seismologica Sinica, 29(6): 654—663(in Chinese). | |
[24] | 袁道阳, 张培震, 方小敏, 等. 2007b. 青藏高原东北缘临夏盆地晚新生代构造变形及过程[J]. 地学前缘, 14(1): 243—250. |
YUAN Dao-yang, ZHANG Pei-zhen, FANG Xiao-min, et al.2007b. Late Cenozoic tectonic deformation of the Linxia Basin, northeastern margin of the Qinghai-Tibet Plateau[J]. Earth Science Frontiers, 14(1): 243—250(in Chinese). | |
[25] | 袁道阳, 张培震, 刘百篪, 等. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报, 78(2): 270—278. |
YUAN Dao-yang, ZHANG Pei-zhen, LIU Bai-chi, et al.2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica, 78(2): 270—278(in Chinese). | |
[26] | 张波, 王爱国, 袁道阳, 等. 2018. 基于多源遥感解译和野外验证的断裂几何展布: 以西秦岭光盖山-迭山南麓断裂为例[J]. 地震地质, 40(5): 1018—1039. doi: 10.3969/j.issn.0253-4967.2018.05.005. |
ZHANG Bo, WANG Ai-guo, YUAN Dao-yang, et al.2018. Fault geometry defined by multiple remote sensing images interpretation and field verification: A case study from southern Guanggaishan-Dieshan Fault, western Qinling[J]. Seismology and Geology, 40(5): 1018—1039(in Chinese). | |
[27] | 张国伟, 郭安林, 姚安平. 2004. 中国大陆构造中的西秦岭-松潘大陆构造结[J]. 地学前缘, 11(3): 23—32. |
ZHANG Guo-wei, GUO An-lin, YAO An-ping.2004. Western Qinling-Songpan continental tectonic node in China’s continental tectonics[J]. Earth Science Frontiers, 11(3): 23—32(in Chinese). | |
[28] | 张培震, 邓起东, 张竹琪, 等. 2013. 中国大陆的活动断裂、 地震灾害及其动力过程[J]. 中国科学(D辑), 43(10): 1607—1620. |
ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al.2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Science in China(Ser D), 43(10): 1607—1620(in Chinese). | |
[29] | 张培震, 闻学泽, 徐锡伟, 等. 2009. 2008年汶川8.0级特大地震孕育和发生的多单元组合模式[J]. 科学通报, 54(7): 944—953. |
ZHANG Pei-zhen, WEN Xue-ze, XU Xi-wei, et al.2009. Tectonic model of the great Wenchuan earthquake of May 12, 2008, Sichuan[J]. Chinese Science Bulletin, 54(7): 944—953(in Chinese). | |
[30] | 郑文俊, 袁道阳, 张培震, 等. 2016. 青藏高原东北缘活动构造几何图像、 运动转换与高原扩展[J]. 第四纪研究, 36(4): 775—788. |
ZHENG Wen-jun, YUAN Dao-yang, ZHANG Pei-zhen, et al.2016. Tectonic geometry and kinematic dissipation of the active faults in the northeastern Tibetan plateau and their implications for understanding northeastward growth of the plateau[J]. Quaternary Sciences, 36(4): 775—788(in Chinese). | |
[31] | 朱介寿, 王绪本, 杨宜海, 等. 2017. 青藏高原东缘的地壳流及动力过程[J]. 地球物理学报, 60(6): 2038—2057. |
ZHU Jie-shou, WANG Xu-ben, YANG Yi-hai, et al.2017. The crustal flow beneath the eastern margin of the Tibetan plateau and its process of dynamics[J]. Chinese Journal of Geophysics, 60(6): 2038—2057(in Chinese). | |
[32] | Avouac J P, Tapponnier P.1993. Kinematic model of active deformation in Central Asia[J]. Geophysical Research Letters, 20(10): 895—898. |
[33] | Bao X Y, Sandvol E, Ni J, et al.2011. High resolution regional seismic attenuation tomography in eastern Tibetan plateau and adjacent regions[J]. Geophysical Research Letters, 38(16): L16304. |
[34] | Beaumont C, Jamieson R A, Nguyen M H, et al.2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation[J]. Nature, 414(6865): 738—742. |
[35] | Bird P.1991. Lateral extrusion of lower crust from under high topography in the isostatic limit[J]. Journal of Geophysical Research, 96(B6): 10275—10286. |
[36] | Block L, Royden L H.1990. Core complex geometries and regional scale flow in the lower crust[J]. Tectonics, 9(4): 557—567. |
[37] | Bott M H.1999. Modeling local crustal isostasy caused by ductile flow in the lower crust[J]. Journal of Geophysical Research, 104(B9): 20349—20359. |
[38] | Brace W F, Kohlstedt D L.1980. Limits on lithospheric stress imposed by laboratory experiments[J]. Journal of Geophysical Research, 85(B11): 6248—6252. |
[39] | Chen S F, Wilson C, Deng Q D, et al.1994. Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan plateau[J]. Journal of Geophysical Research: Solid Earth, 99(B12): 24025—24038. |
[40] | Clark M K, Bush J W, Royden L H.2005. Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan plateau[J]. Geophysical Journal International, 162(2): 575—590. |
[41] | Clark M K, Royden L H.2000. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow[J]. Geology, 28(8): 703—706. |
[42] | Diao F Q, Wang R J, Wang Y B, et al.2018. Fault behavior and lower crustal rheology inferred from the first seven years of postseismic GPS data after the 2008 Wenchuan earthquake[J]. Earth and Planetary Science Letters, 495:202—212. |
[43] | England P C, McKenzie D.1982. A thin viscous sheet model for continental deformation[J]. Geophysical Journal International, 70(2): 295—321. |
[44] | England P, Houseman G.1985. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighbouring regions[J]. Nature, 315(6017): 297—301. |
[45] | England P, Houseman G.1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone[J]. Journal of Geophysical Research: Solid Earth, 91(B3): 3664—3676. |
[46] | Goetze C, Evans B.1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics[J]. Royal Astronomical Society Geophysical Journal, 59(3): 463—478. |
[47] | Harrison T M, Copeland P, Kidd W S F, et al.1992. Raising Tibet[J]. Science, 255(5052): 1663—1670. |
[48] | Houseman G, England P.1986. Finite strain calculations of continental deformation: 1. Method and general results for convergent zones[J]. Journal of Geophysical Research: Solid Earth, 91(B3): 3651—3663. |
[49] | Hu S B, He L J, Wang J Y.2000. Heat flow in the continental area of China: A new data set[J]. Earth and Planetary Science Letters, 179(2): 407—419. |
[50] | Jin Y, McNutt M K, Zhu Y S.1994. Evidence from gravity and topography data for folding of Tibet[J]. Nature, 371(6499): 669—674. |
[51] | Kirby S H.1983. Rheology of the lithosphere[J]. Reviews of Geophysics and Space Physics, 21(6): 1458—1487. |
[52] | Kruse S, McNutt M K, Phipps-Morgan J, et al.1991. Lithospheric extension near Lake Mead, Nevada: A model for ductile flow in the lower crust[J]. Journal of Geophysical Research, 96(B3): 4435—4456. |
[53] | Le Fort P.1975. Himalayas, the collided range: Present knowledge of the continental arc[J]. American Journal of Science, 275(1): 1—44. |
[54] | Lease R O, Burbank D W, Gehrels G E, et al.2007. Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet[J]. Geology, 35(3): 239. |
[55] | Liu Z, Park J, Rye D M.2015. Crustal anisotropy in northeastern Tibetan plateau inferred from receiver functions: Rock textures caused by metamorphic fluids and lower crust flow?[J]. Tectonophysics, 661:66—80. |
[56] | Makovsky Y, Klemperer S L, Ratschbacher L, et al.1996. INDEPTH wide-angle reflection observation of P-wave-to-S-wave conversion from crustal bright spots in Tibet[J]. Science, 274(5293): 1690—1691. |
[57] | Marquart G.1991. Finite element modeling of lower crustal flow: A model for crustal thinning variations[J]. Journal of Geophysical Research: Solid Earth, 96(B12): 20331—20335. |
[58] | McQuarrie N, Chase C.2000. Raising the Colorado Plateau[J]. Geology, 28(1): 91—94. |
[59] | Molnar P, Tapponnier P.1975. Cenozoic tectonics of Asia: Effects of a continental collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419—426. |
[60] | Nelson K D, Zhao W J, Brown L D, et al.1996. Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH initial results[J]. Science, 274:1684—1688. |
[61] | Ren J J, Xu X W, Yeats R S, et al.2013. Millennial slip rates of the Tazang Fault, the eastern termination of Kunlun Fault: Implications for strain partitioning in eastern Tibet[J]. Tectonophysics, 68:1180—1200. |
[62] | Ren J J, Xu X W, Zhang S M, et al.2018. Surface rupture of the 1933 M7.5 Diexi earthquake in eastern Tibet: Implications for seismogenic tectonics[J]. Geophysical Journal International, 212:1627—1644. |
[63] | Royden L H.1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust[J]. Journal of Geophysical Research: Solid Earth, 101(B8): 17679—17705. |
[64] | Royden L H, Burchfiel B C, King R W, et al.1997. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 276(5313): 788—790. |
[65] | Ryder I, Bürgmann R, Pollitz F.2011. Lower crustal relaxation beneath the Tibetan plateau and Qaidam Basin following the 2001 Kokoxili earthquake[J]. Geophysical Journal International, 187(2): 613—630. |
[66] | Ryder I, Bürgmann R, Sun J.2010. Tandem afterslip on connected fault planes following the 2008 Nima-Gaize(Tibet)earthquake[J]. Journal of Geophysical Research, 115: B03404. |
[67] | Ryder I, Parsons B, Wright T J, et al.2007. Post-seismic motion following the 1997 Manyi(Tibet) earthquake: InSAR observations and modelling[J]. Geophysical Journal International, 169(3): 1009—1027. |
[68] | Schmeling H, Marquart G.1990. A mechanism for crustal thinning without lateral extension[J]. Geophysical Research Letters, 17(13): 2417—2420. |
[69] | Searle M P.2015. Mountain building, tectonic evolution, rheology, and crustal flow in the Himalaya, Karakoram, and Tibet[A]. In: Treatise on Geophysics Amsterdam, Elsevier, 4:469—511. |
[70] | Synder D, Barazangi M.1986. Deep crustal structure and flexure of the Arabian Plate beneath the Zagros collisional mountain belt as inferred from gravity observations[J]. Tectonics, 5(3): 361—373. |
[71] | Tapponnier P, Molnar P.1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264(5584): 419—426. |
[72] | Tapponnier P, Peltzer G, Le Dain A Y, et al.1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611—616. |
[73] | Tian Y T, Kohn B P, Qiu N S, et al.2018. Eocene to Miocene out-of-sequence deformation in the eastern Tibetan plateau: Insights from shortening structures in the Sichuan Basin[J]. Journal of Geophysical Research: Solid Earth, 123(2): 1840—1855. |
[74] | Wang E, Burchfiel B C, Royden L H, et al.1998. Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali fault systems of southwestern Sichuan and central Yunnan, China[J]. Geological Society of America Special Papers, 327:1—108. |
[75] | Wdowinski S, Axen G J.1992. Isostatic rebound due to tectonic denudation: A viscous flow model of a layered lithosphere[J]. Tectonics, 11(2): 303—315. |
[76] | Wessel P, Smith W H F.1998. New, improved version of generic mapping tools released[J]. EOS, Transactions, American Geophysical Union, 79(47): 579. |
[77] | Xie J, Ritzwoller M H, Shen W, et al.2013. Crustal radial anisotropy across eastern Tibet and the western Yangtze Craton[J]. Journal of Geophysical Research: Solid Earth, 118(8): 4226—4252. |
[78] | Yang Y J, Ritzwoller M H, Zheng Y, et al.2012. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04303. |
[79] | Yang Y J, Zheng Y, Chen J, et al.2010. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography[J]. Geochemistry, Geophysics, Geosystems, 11: Q08010. |
[80] | Yuan D Y, Ge W P, Chen Z W, et al.2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 32(5): 1358—1370. |
[81] | Zhang H P, Craddock W H, Lease R O, et al.2012. Magnetostratigraphy of the Neogene Chaka Basin and its implications for mountain building processes in the northeastern Tibetan plateau[J]. Basin Research, 24(1): 31—50. |
[82] | Zhang P Z, Shen Z, Wang M, et al.2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809. |
[83] | Zhang P Z.2013. A review on active tectonics and deep crustal processes of the western Sichuan region, eastern margin of the Tibetan plateau[J]. Tectonophysics, 584:7—22. |
[84] | Zhang Z J, Yuan X H, Yun C, et al.2010. Seismic signature of the collision between the east Tibetan escape flow and the Sichuan Basin[J]. Earth and Planetary Science Letters, 292(3-4): 254—264. |
[1] | 代成龙, 张玲, 梁诗明, 张克亮, 熊小慧, 甘卫军. 中亚塔拉斯-费尔干纳断裂现今的走滑速率及其分段变化特征——基于GPS观测的深究[J]. 地震地质, 2021, 43(2): 263-279. |
[2] | 孙稳, 何宏林, 魏占玉, 高伟, 孙浩越, 邹俊杰. 基于无人机航测获取高分辨率DEM数据的断层几何结构精细解译与分析——以海原断裂唐家坡为例[J]. 地震地质, 2019, 41(6): 1350-1365. |
[3] | 汤井田, 杨磊, 任政勇, 胡双贵, 徐志敏. 龙门山断裂带卫星重力场特征及其发震机制[J]. 地震地质, 2019, 41(5): 1136-1154. |
[4] | 吴贵灵, 祝成宇, 王国灿, 张攀. 青藏高原东南缘地貌边界性质的界定及其对高原东南缘扩展模式的启示[J]. 地震地质, 2019, 41(2): 281-299. |
[5] | 石峰, 何宏林, Alexander L Densmore, 魏占玉, 孙浩越. 利用水系流域偏转研究走滑断层的运动模式——以南汀河断裂带为例[J]. 地震地质, 2018, 40(4): 773-783. |
[6] | 扈桂让, 李自红, 闫小兵, 赵晋泉, 曾金艳, 郭瑾. 韩城断裂晚第四纪活动性研究[J]. 地震地质, 2017, 39(1): 206-217. |
[7] | 王静, 柴炽章, 马禾青, 曾宪伟, 李国斌. 近年来南北地震带北段地壳运动特征[J]. 地震地质, 2015, 37(4): 1043-1054. |
[8] | 高明星, 陈桂华, 徐锡伟. 地貌参数指示的临潭-宕昌断裂带最新构造隆升差异与地震活动[J]. 地震地质, 2015, 37(3): 709-718. |
[9] | 李彦宝, 冉勇康, 陈立春, 吴富峣, 雷生学. 河套断陷带主要活动断裂最新地表破裂事件与历史大地震[J]. 地震地质, 2015, 37(1): 110-125. |
[10] | 贺根文, 付碧宏, 刘鸣, 杨顺虎, 时丕龙, 刘锋. 龙陵-瑞丽断裂带附近的构造地貌与断裂活动性[J]. 地震地质, 2014, 36(2): 434-448. |
[11] | 李宝龙, 季建清, 罗清华, 龚俊峰, 庆建春. 滇西点苍山-哀牢山隆升构造样式和隆升时限[J]. 地震地质, 2012, (4): 696-712. |
[12] | 毕珉烽, 楚全芝, 邓志辉, 潘博, 张长厚, 周庆. 长江三峡地区仙女山断裂北端延伸问题探讨[J]. 地震地质, 2012, (2): 294-302. |
[13] | 何宏林. 活动断层填图中的航片解译问题[J]. 地震地质, 2011, 33(4): 938-950. |
[14] | 向宏发, 韩竹军, 虢顺民, 张晚霞, 陈立春. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质, 2004, 26(4): 597-610. |
[15] | 计凤桔, 虢顺民, 向宏发. 红河断裂带第四纪活动的时空演化特征[J]. 地震地质, 1997, 19(2): 108-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||