基岩区断层黏滑与蠕滑的地质标志和岩石力学实验证据
周永胜
中国地震局地质研究所, 地震动力学国家重点实验室, 100029 北京

〔作者简介〕 周永胜, 男, 1969年生, 研究员, 研究方向为构造物理实验, E-mail: zhouysh@ies.ac.cn

摘要

文中总结了基岩断层带黏滑与蠕滑的地质标志与岩石力学实验证据, 分析了控制黏滑与蠕滑的物理机制。 断层带内的矿物组成、 矿物变形机制、 流体作用和断层带变形方式等是控制黏滑与蠕滑的主要因素。 富含黏土矿物的断层泥具有速度强化型摩擦滑动, 控制着断层蠕滑, 而以方解石、 石英、 长石及辉石等造岩矿物为主的断层泥在大陆浅源地震的震源深度条件下具备黏滑条件。 脆性破裂伴随的扩容过程是断层黏滑的必要条件, 而压实、 碎裂和塑性剪切变形形成的叶理和小褶皱对应于蠕滑。 在流体作用下, 压溶使孔隙和微裂隙愈合, 有利于断层强度的恢复和断层闭锁, 既是断层发生不稳定滑动的根源, 也是断层带局部存在高压流体的条件, 而在流体作用下的退变质反应与水解反应生成黏土矿物和层状及环状硅酸盐矿物, 不仅降低了断层带的强度, 还导致断层向蠕滑转变。 断层带内均匀分布多个剪切面和较宽的变形带对应于蠕滑, 局部化的R剪切及Y剪切、 窄变形带和摩擦镜面对应于黏滑。

关键词: 黏滑; 蠕滑; 基岩断层
中图分类号:P315.2 文献标志码:A 文章编号:0253-4967(2019)05-1266-07
THE GEOLOGICAL AND ROCK MECHANICAL DISTINCTION EVIDENCE BETWEEN STICK-SLIP AND CREEP IN HOST ROCK SEGMENTS OF FAULT
ZHOU Yong-sheng
State Key Laboratory of Earthquake Dynamics, Institute of Geology,China Earthquake Administration, Beijing 100029, China
Abstract

Paleo-seismic and fault activity are hard to distinguish in host rock areas compared with soft sedimentary segments of fault. However, fault frictional experiments could obtain the conditions of stable and unstable slide, as well as the microstructures of fault gouge, which offer some identification marks between stick-slip and creep of fault.
We summarized geological and rock mechanical distinction evidence between stick-slip and creep in host rock segments of fault, and analyzed the physical mechanisms which controlled the behavior of stick-slip and creep. The chemical composition of fault gouge is most important to control stick-slip and creep. Gouge composed by weak minerals, such as clay mineral, has velocity weakening behavior, which causes stable slide of fault. Gouge with rock-forming minerals, such as calcite, quartz, feldspar, pyroxene, has stick-slip behavior under condition of focal depth. To the gouge with same chemical composition, the deformation mechanism controls the frictional slip. It is essential condition to stick slip for brittle fracture companied by dilatation, but creep is controlled by compaction and cataclasis as well as ductile shear with foliation and small fold. However, under fluid conditions, pressure solution which healed the fractures and caused strength recovery of fault, is the original reason of unstable slide, and also resulted in locking of fault with high pore pressure in core of fault zone. Contrast with that, rock-forming minerals altered to phyllosilicates in the gouges by fluid flow through degenerative reaction and hydrolysis reaction, which produced low friction fault and transformations to creep. The creep process progressively developed several wide shear zones including of R, Y, T, P shear plane that comprise gouge zones embedded into wide damage zones, which caused small earthquake distributed along wide fault zones with focal mechanism covered by normal fault, strike-slip fault and reverse fault. However, the stick-slip produced mirror-like slide surfaces with very narrow gouges along R shear plane and Y shear plane, which caused small earthquake distributed along narrow fault zones with single kind of focal mechanism.

Keyword: stick-slip; creep; host rock segments of fault
0 引言

利用形变测量和小震活动性观测确定断层的黏滑和蠕滑, 为研究断层滑动方式和滑动性质提供了直接证据。 例如, 利用形变测量在多条发生过强烈地震的断层上观测到了蠕滑行为, 如圣安德列斯断裂(Ryder et al., 2008; de Michele et al., 2011)、 安纳托利亚断裂(Ç akir et al., 2005)、 海原断裂(Cavalié et al., 2008; Jolivet et al., 2012, 2013, 2015; Chen et al., 2018)及鲜水河断裂(Zhang et al., 2018)。 蠕滑断层有2种类型, 即长期蠕滑的无震断层和在某一时间段(余滑、 震后松弛期和间震期)蠕滑的地震断层。 上述断层中, 除圣安德列斯断裂南段被认为是长期蠕滑的无震断裂(Lienkaemper et al., 1991)外, 其它断裂的蠕滑都是强震之后的瞬态蠕滑行为。 目前, 对于这些基于形变和小震活动性观测得到的蠕滑断裂, 其深部的蠕滑机制还不清楚, 需要直接的地质证据。

在松散沉积层区, 通过探槽揭示的断层位错与古地震信息为研究断层的活动性提供了直接证据。 然而, 基岩区断层的古地震和地震危险性研究一直是一个难题, 虽然一些研究者通过断层面的形貌特征和断层泥微观结构分析, 给出了某些可据此识别黏滑与蠕滑的现象, 但对这些现象的认识依然存在很大分歧。 与野外观测相比, 通过断层摩擦滑动实验能获得稳定滑动和不稳定滑动的条件及其对应的断层泥微观结构特征, 这为判定断层黏滑与蠕滑行为提供了可借鉴的识别标志。

本文总结了基岩断层带黏滑与蠕滑的地质标志与岩石力学实验证据, 为研究地震断层在基岩区的地震危险性研究提供了可能的途径。

1 断层带黏滑与蠕滑的地质标志

1999年伊兹米特地震发生后, 有研究者在安纳托利亚断裂的东北段观测到了显著的震后蠕滑行为(Hearn et al., 2009; Kaneko et al., 2013; Cetin et al., 2014; Hussain et al., 2016a, b)。 Kaduri等(2017)研究了断裂闭锁段和蠕滑段构造岩的物质组成和变形机制, 试图从地质学角度解答以下问题: 1)闭锁段和蠕滑段是否由特殊的地质条件和断层结构所控制; 2)控制断层带蠕滑的主要变形机制; 3)断层带内的流体特征、 流体岩石的相互作用以及流体对断层变形机制和滑动方式的影响; 4)断层带的岩石物理与岩石力学特性对断层闭锁与蠕滑的影响, 以及这些特性是否随时间发生变化。

通过对断层构造岩的微观结构和成分进行详细研究后, 发现断层闭锁段具有以下几个特征(Kaduri et al., 2017): 1)断层带由很窄的富含铁氧化物的碎裂断层泥和被碳酸岩脉体充填而愈合的破裂带组成, 主滑动面具有光滑的镜面摩擦, 或者由厘米到分米量级的剪切带组成, 剪切带平行于镜面摩擦滑动面, 其内有显著的压溶缝合线; 2)断层闭锁段岩石由高强度造岩矿物— — 方解石、 石英或长石组成, 断层泥基本不含黏土矿物, 成分分析结果显示, 从剪切带核部的断层泥和破碎带到围岩, 化学成分变化不大; 3)根据压溶缝合线和脉体充填的裂隙判断, 近断层的局部应力方向随时间发生了明显变化。

断层蠕滑段具有以下几个特征: 1)蠕滑断层沿着较宽的剪切带滑动, 剪切带由很宽的破碎带和穿插于其间的断层泥组成; 2)断层蠕滑段的断层泥中富含环状矿物和黏土矿物, 成分分析结果显示, 从剪切带核部的断层泥和破碎带到围岩, 化学成分随空间发生很大的变化, 这种变化可能与流体活动相关, 如可溶性矿物在流体作用下随时间流失; 3)在断层带内发现明显的韧性变形, 如斑晶旋转滚动、 不对称褶皱以及劈理面, 而断层泥中发育有压溶形成的劈理与面理, 破碎带中发育被碳酸岩充填的裂隙。

2 断层带黏滑与蠕滑的高温高压岩石力学实验证据

速率-状态摩擦本构方程是确定断层滑动稳定性的基础理论, 其中速度弱化对应于断层不稳定滑动, 具备黏滑和地震成核条件, 而速度强化对应于断层稳定滑动, 具备蠕滑的条件。 岩石力学实验研究表明, 富含黏土矿物的断层泥在地壳温度和压力条件下以稳定滑动与蠕滑为主(Verberne et al., 2010; Zhang et al., 2013; Lu et al., 2014, 2018); 而以方解石(焦裕等, 2019)、 石英(Blanpied et al., 1998; Marone, 1998; Zhang et al., 2016)、 长石(He et al., 2006, 2007, 2013, 2016)和辉石(He et al., 2006, 2007, 2013)等造岩矿物为主的断层泥在大陆浅源地震震源深度的温度和压力条件下具备不稳定滑动和地震成核条件。

摩擦滑动实验样品的微观结构分析表明, 均匀分布的R剪切和Y剪切以及较宽变形带对应于速度强化和蠕滑, 而局部化的R剪切和Y剪切以及窄变形带对应于速度弱化和黏滑(He et al., 2006, 2007, 2013; Scuderi et al., 2017)。 这种变形微观结构与滑动稳定性的关系受里德尔剪切的演化过程所控制(Scuderi et al., 2017)。

3 讨论
3.1 断层蠕滑的标志及其机制

通过高温高压岩石力学实验, 得到了多种可能使断层发生蠕滑的解释: 1)弱矿物型蠕滑, 即由弱矿物组成的断层岩, 在实验温度和压力条件下始终处于速度强化域, 这是造成断层蠕滑的最主要的机制之一(Moore et al., 2007; Verberne et al., 2010; Carpenter et al., 2011, 2016; Lockner et al., 2011; Zhang et al., 2013; Lu et al., 2014, 2018), 如圣安地列斯断层的蠕滑(Moore et al., 2007; Lockner et al., 2011)。 2)均匀分布的由变形带控制的速度强化型蠕滑(He et al., 2006, 2007), 即在均匀分布的较宽变形带中存在多个滑动面, 如R剪切、 Y剪切、 T滑动面和P滑动面等, 这种均匀分布的滑动面是断层带发生蠕滑的主要方式, 该模式得到了摩擦实验(He et al., 2006, 2007, 2013; Scuderi et al., 2017)和野外观测(Kaduri et al., 2017)的证实。 3)断层脆性蠕滑(Brantut et al., 2012, 2013), 即在断层浅部由岩石碎裂和裂隙引起的断层持续蠕滑。 4)流体和应力驱动的压溶型黏性蠕变(Gratier et al., 2011, 2013), 即在流体和应力作用下, 方解石、 石英等矿物发生压溶蠕变。 另外, 在流体作用下, 断层岩发生退变质反应与水解反应, 岩石与流体反应生成黏土矿物和层状及环状硅酸盐矿物, 不仅降低了断层带的强度, 同时也引起断层的蠕滑。 5)摩擦滑动与黏性蠕变的混合机制(Bos et al., 2000, 2002), 即在压实和碎裂与塑性剪切变形共同控制下形成的叶理和小褶皱对应于稳定滑动与蠕滑(Janssen et al., 2012, 2014)。

3.2 断层黏滑的标志及其机制

基于高温高压岩石力学实验, 给出了2种断层黏滑的主要解释: 1)高强度造岩矿物发生脆性破裂与伴随的扩容过程是断层不稳定滑动和黏滑的微观机制(Marone, 1998; He et al., 2006, 2007, 2013)。 这种脆性破裂对应于局部化的R剪切和Y剪切, 在野外表现为窄变形带和摩擦镜面(Kaduri et al., 2017)。 2)在含流体条件下, 在断层泥摩擦滑动过程中, 颗粒间的压溶过程引起接触状态改变, 是发生不稳定滑动的根源(He et al., 2013, 2016)。 此外, 压溶对孔隙和微裂隙的愈合作用有利于断层强度的恢复和断层闭锁, 导致断层发生黏滑(焦裕等, 2019), 这也是断层带局部存在高压流体的条件(韩亮等, 2013)。

3.3 断层蠕滑向黏滑转变的机制

大部分断层的蠕滑属于地震断层在间震期的瞬态蠕滑, 如海原断裂的老虎山段近期的蠕滑行为(Cavalié et al., 2008; Jolivet et al., 2012, 2013, 2015; Chen et al., 2018)就属于这种瞬态蠕滑。

断层由蠕滑向黏滑转变对应于速度强化向速度弱化转变, 这种转变受断层带的物质组成和变形机制的控制。 对于物质组成相同的同一断层, 在地震周期的不同阶段, 其蠕滑向黏滑转化可以用里德尔剪切演化解释。

在间震期, 断层带的小震活动性和震源机制具有随机性分布的特征, 但在强震发生前, 小震分布形成相对密集的条带, 且震源机制趋于一致, 这种变化趋势受里德尔剪切控制。 里德尔剪切的演化过程研究显示(Scuderi et al., 2017), 在断层发育初期, 断层带内由均匀分布的R、 Y、 T、 P等多个滑动面和较宽变形带组成, 对应于断层的蠕滑。 此时, 小震沿R、 Y、 T、 P等多个滑动面发生, 并分布于宽变形带中, 震源机制具有正断型、 逆断型和走滑型等多种类型。 随着断层带成熟度的增加, 断层带内均匀分布的滑动带转变为局部化的R剪切、 Y剪切以及窄变形带, 断层逐渐由蠕滑向黏滑转化, 而小震沿着R剪切和Y剪切等局部化的滑动面发生, 并分布于窄变形带中, 震源机制向单一类型转化。 这种滑动带局部化、 不稳定滑动与地震活动的一致性, 被称为均阻化或协同化。

4 小结

本文综合分析了岩石力学实验结果和基岩断层带介质成分与变形特征, 总结了断层带闭锁、 黏滑与蠕滑的控制因素: 1)断层带成分: 富含黏土矿物的弱矿物断层泥的速度强化控制断层蠕滑, 而以方解石、 石英、 长石和辉石等造岩矿物为主的断层泥在大陆浅源地震的震源深度条件下具备黏滑和地震成核条件。 高强度介质是断层闭锁形成凹凸体的必要条件, 只有高强度介质具备孕育及发生强震的条件, 而低强度介质基本不具备断层闭锁和发生大地震的条件。 2)变形机制: 脆性破裂伴随的扩容过程是断层速度弱化和不稳定滑动的微观机制, 也是断层带内出现闭锁-黏滑和强震孕育发生的必要条件; 而压实、 碎裂和塑性剪切变形形成的叶理和小褶皱对应于速度强化、 稳定滑动及蠕滑。 3)流体: 在流体作用下, 断层带内矿物压溶对孔隙和微裂隙的愈合有利于断层强度的恢复及闭锁, 其既是断层发生不稳定滑动的根源, 也是断层带局部存在高压流体的条件, 闭锁程度随断层愈合程度的提高而增加; 在流体作用下的退变质反应与水解反应将生成黏土矿物和层状及环状硅酸盐矿物, 不仅降低了断层带的强度, 也导致断层向蠕滑转变。 4)滑动方式: 均匀分布的多个剪切面和较宽变形带对应于蠕滑, 而局部化的R剪切、 Y剪切、 窄变形带和摩擦镜面对应于黏滑。

致谢 审稿人对本文提出了有益的修改建议, 在此表示衷心感谢!

The authors have declared that no competing interests exist.

参考文献
[1] 韩亮, 周永胜, 姚文明. 2013. 中地壳断层带内微裂隙愈合与高压流体形成条件的模拟实验研究[J]. 地球物理学报, 56(1): 91105.
HAN Liang, ZHOU Yong-sheng, YAO Wen-ming. 2013. A simulating experimental study on crack healing and the formation of high pore fluid pressure in faults of middle crust[J]. Chinese Journal of Geophysics, 56(1): 91105(in Chinese). [本文引用:1]
[2] 焦裕, 周永胜, 张雷, . 2019. 流体对石灰岩断层摩擦滑动影响的实验研究[J]. 地球物理学报, 62(1): 159171. doi: DOI: 106038/cjg2019l0316.
JIAO Yu, ZHOU Yong-sheng, ZHANG Lei, et al. 2019. Experimental study on the effect of fluid to friction sliding of limestone fault gouge[J]. Chinese Journal of Geophysics, 62(1): 159171(in Chinese). [本文引用:2]
[3] Blanpied M L, Marone C J, Lockner D A, et al. 1998. Quantitative measure of the variation in fault rheology due to fluid-rock interactions[J]. Journal of Geophysical Research: Solid Earth, 103(B5): 96919712. [本文引用:1]
[4] Bos B, Spiers C J. 2000. Effect of phyllosilicates on fluid-assisted healing of gouge-bearing faults[J]. Earth and Planetary Science Letters, 184(1): 199210. doi: DOI:10.1016/S0012-821X(00)00304—6. [本文引用:1]
[5] Bos B, Spiers C J. 2002. Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles[J]. Journal of Geophysical Research: Solid Earth, 107(B2): 2028. doi: DOI:10.1029/2001JB000301. [本文引用:1]
[6] Brantut N, Heap M J, Baud P, et al. 2012. Micromechanics of brittle creep in rocks[J]. Journal of Geophysical Research: Solid Earth, 117(B8): B08412. [本文引用:1]
[7] Brantut N, Heap M, Meredith P, et al. 2013. Time-dependent cracking and brittle creep in crustal rocks: A review[J]. Journal of Structural Geology, 52: 1743. doi: DOI:10.1016/j.jsg.2013.03.007. [本文引用:1]
[8] Çakir Z, Akoglu A, Belabbes S, et al. 2005. Creeping along the Ismetpasa section of the North Anatolian Fault(western Turkey): Rate and extent from InSAR[J]. Earth and Planetary Science Letters, 238(1-2): 225234. doi: DOI:10.1016/j.epsl.2005.06.044. [本文引用:1]
[9] Carpenter B M, Ikari M J, Marone C. 2016. Laboratory observations of time-dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges[J]. Journal of Geophysical Research: Solid Earth, 121(2): 11831201. doi: DOI:10.1002/2015JB012136. [本文引用:1]
[10] Carpenter B M, Marone C, Saffer D M. 2011. Weakness of the San Andreas Fault revealed by samples from the active fault zone[J]. Nature Geoscience, 4(4): 251254. doi: DOI:10.1038/ngeo1089. [本文引用:1]
[11] Cavalié O, Lasserre C, Doin M P, et al. 2008. Measurement of interseismic strain across the Haiyuan Fault(Gansu, China), by InSAR[J]. Earth and Planetary Science Letters, 275(3-4): 246257. doi: DOI:10.1016/j.epsl.2008.07.057. [本文引用:2]
[12] Cetin E, Çakir Z, Meghraoui M, et al. 2014. Extent and distribution of aseismic slip on the Ismetpasa segment of the North Anatolian Fault(Turkey)from Persistent Scatterer InSAR[J]. Geochemistry, Geophysics, Geosystems, 15(7): 28832894. doi: DOI:10.1002/2014GC005307. [本文引用:1]
[13] Chen T, Liu-Zeng J, Shao Y X, et al. 2018. Geomorphic offsets along the creeping Laohu Shan section of the Haiyuan Fault, northern Tibetan plateau[J]. Geosphere, 14(3): 1—22. https: ∥doi. org/101130/GES01561. 1. [本文引用:2]
[14] de Michele M, Raucoules D, Roland one F, et al. 2011. Spatiotemporal evolution of surface creep in the Parkfield region of the San Andreas Fault(1993—2004)from synthetic aperture radar[J]. Earth and Planetary Science Letters, 308(1-2): 141150. doi: DOI:10.1016/j.epsl.2011.05.049. [本文引用:1]
[15] Gratier J P, Richard J, Renard F, et al. 2011. Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault observatory at depth[J]. Geology, 39(12): 11311134. doi: DOI:10.1130/G32073.1. [本文引用:1]
[16] Gratier J P, Thouvenot F, Jenatton L, et al. 2013. Geological control of the partitioning between seismic and aseismic sliding behaviors in active faults: Evidence from the western Alps, France[J]. Tectonophysics, 600: 226242. doi: DOI:10.1016/j.tecto.2013.02.013. [本文引用:1]
[17] He C R, Luo L, Hao Q M, et al. 2013. Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions[J]. Journal of Geophysical Research: Solid Earth, 118(7): 34083430. [本文引用:1]
[18] He C R, Tan W B, Zhang L. 2016. Comparing dry and wet friction of plagioclase: Implication to the mechanism of frictional evolution effect at hydrothermal conditions[J]. Journal of Geophysical Research: Solid Earth, 121: 63656383. [本文引用:1]
[19] He C R, Wang Z L, Yao W M. 2007. Frictional sliding of gabbro gouge under hydrothermal conditions[J]. Tectonophysics, 445(3-4): 353362. [本文引用:5]
[20] He C R, Yao W M, Wang Z L, et al. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures[J]. Tectonophysics, 427(1-4): 217229. [本文引用:6]
[21] Hearn E H, McClusky S, Ergintav S, et al. 2009. Izmit earthquake postseismic deformation and dynamics of the North Anatolian fault zone[J]. Journal of Geophysical Research: Solid Earth, 114(B8): B08405. doi: DOI:10.1029/2008JB006026. [本文引用:1]
[22] Hussain E, Hooper A, Wright T J, et al. 2016 a. Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements[J]. Journal of Geophysical Research: Solid Earth, 121(12): 90009019. doi: DOI:10.1002/2016JB013108. [本文引用:1]
[23] Hussain E, Wright T J, Walters R J, et al. 2016 b. Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, Turkey: Implications for a shallow slip deficit[J]. Journal of Geophysical Research: Solid Earth, 121(4): 29803001. doi: DOI:10.1002/2015JB012737. [本文引用:1]
[24] Janssen C, Kanitpanyacharoen W, Wenk H R, et al. 2012. Clay fabrics in SAFOD core samples[J]. Journal of Structural Geology, 43: 118127. [本文引用:1]
[25] Janssen C, Wirth R, Wenk H R, et al. 2014. Faulting processes in active faults: Evidences from TCDP and SAFOD drill core samples[J]. Journal of Structural Geology, 65: 100116. [本文引用:1]
[26] Jolivet R, Cand ela T, Lasserre C, et al. 2015. The burst-like behavior of aseismic slip on a rough fault: The creeping section of the Haiyuan Fault, China[J]. Bulletin of the Seismological Society of America, 105(1): 480488. doi: DOI:10.1785/0120140237. [本文引用:1]
[27] Jolivet R, Lasserre C, Doin M P, et al. 2012. Shallow creep on the Haiyuan Fault(Gansu, China)revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 117(B6): B06401. doi: DOI:10.1029/2011JB008732. [本文引用:2]
[28] Jolivet R, Lasserre C, Doin M P, et al. 2013. Spatio-temporal evolution of aseismic slip along the Haiyuan Fault, China: Implications for fault frictional properties[J]. Earth and Planetary Science Letters, 377-378: 2333. [本文引用:2]
[29] Kaduri M, Gratier J P, Renard F, et al. 2017. The implications of fault zone transformation on aseismic creep: Example of the North Anatolian Fault, Turkey[J]. Journal of Geophysical Research: Solid Earth, 122(6). doi: DOI:10.1002/2016JB013803. [本文引用:4]
[30] Kaneko Y, Fialko Y, Sand well D T, et al. 2013. Interseismic deformation and creep along the central section of the North Anatolian Fault(Turkey): InSAR observations and implications for rate-and -state friction properties[J]. Journal of Geophysical Research: Solid Earth, 118(1): 316331. doi: DOI:10.1029/2012JB009661. [本文引用:1]
[31] Lienkaemper J J, Borchardt G, Lisowski M. 1991. Historic creep rate and potential for seismic slip along the Hayward Fault, California[J]. Journal of Geophysical Research: Solid Earth, 96(B11): 1826118283. [本文引用:1]
[32] Lockner D A, Morrow C, Moore D, et al. 2011. Low strength of deep San Andreas Fault gouge from SAFOD core[J]. Nature, 472(7341): 8285. doi: DOI:10.1038/nature09927. [本文引用:2]
[33] Lu Z, He C R. 2014. Frictional behavior of simulated biotite fault gouge under hydrothermal conditions[J]. Tectonophysics, 622: 6280. [本文引用:2]
[34] Lu Z, He C R. 2018. Friction of foliated fault gouge with a biotite interlayer at hydrothermal Conditions[J]. Tectonophysics, 740-741: 7292. [本文引用:2]
[35] Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Annual Review of Earth and Planetary Sciences, 26(1): 643696. doi: DOI:10.1146/annurev.earth.26.1.643. [本文引用:2]
[36] Moore D E, Rymer M J. 2007. Talc-bearing serpentinite and the creeping section of the San Andreas Fault[J]. Nature, 448(7155): 795797. doi: DOI:10.1038/nature06064. [本文引用:2]
[37] Ryder I, Bürgmann R. 2008. Spatial variations in slip deficit on the central San Andreas Fault from InSAR[J]. Geophysical Journal International, 175(3): 837852. doi: DOI:10.1111/j.1365-246X.2008.03938.x.. [本文引用:1]
[38] Scuderi M M, Collettini C, Viti E, et al. 2017. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode[J]. Geology, 45(8): G39033. 1. doi: DOI:10.1130/G39033.1. [本文引用:4]
[39] Verberne B A, He C R, Spiers C J. 2010. Frictional properties of sedimentary rocks and natural fault gouge from the Longmen Shan fault zone, Sichuan, China[J]. Bulletin ofthe Seismological Society of America, 100(5B): 27672790. [本文引用:2]
[40] Zhang J, Wen X Z, Cao J L, et al. 2018. Surface creep and slip-behavior segmentation along the northwestern Xianshuihe fault zone southwestern China determined from decades of fault-crossing short-baseline and short-level surveys[J]. Tectonophysics, 722: 356372. [本文引用:1]
[41] Zhang L, He C R. 2013. Frictional properties of natural gouges from Longmenshan fault zone ruptured during the Wenchuan MW7. 9 earthquake[J]. Tectonophysics, 594: 149164. [本文引用:2]
[42] Zhang L, He C R. 2016. Frictional properties of phyllosilicate-rich myloniteand conditions for the brittle-ductile transition[J]. Journal of Geophysical Research: Solid Earth, 121(4): 30173047. doi: DOI:10.1002/2015JB012489. [本文引用:]