藏北改则县别若则错活动断裂的发现及其地质意义
哈广浩1,2, 吴中海1, 马凤山3, 曾庆利4, 张路青3, 盖海龙5
1)中国地质科学院地质力学研究所, 北京 100081
2)中国地质科学院, 北京 10003
3)中国科学院地质与地球物理研究所, 北京 100029
4)中国科学院大学地球与行星科学学院, 北京 100049
5)青海省地震局, 西宁 810001
*通讯作者: 曾庆利, 男, 博士, 副教授, 主要从事地质灾害研究, E-mail: zengql@ucas.ac.cn

〔作者简介〕 哈广浩, 男, 1990年生, 中国地质科学院地质力学研究所构造地质学专业在读博士研究生, 主要从事青藏高原及邻区活动构造研究, E-mail: haguanghao@163.com

摘要

由于调查研究资料有限, 目前对藏北高原内部近EW向的伸展变形样式和具体调节机制一直存在诸多争议。最新开展的地表调查在藏北高原西部的别若则错新发现了1条长约20km、 走向近NNW的走滑断裂。该断裂表现出断塞塘、 水系错动及断层崖等典型的走滑断裂变形标志。水系错动及构造地貌显示, 别若则错断裂是以右旋走滑运动为主、 兼具明显正断分量的张扭性断层, 是高原内部近EW向伸展变形的产物。通过与羌塘古大湖进行对比分析, 认为该断裂错断的最新地貌体是晚更新世的冲洪积扇, 未错断全新世扇体, 且断崖坡角已显著变缓, 表明其最新活动时间可能为晚更新世。综合分析地表调查和遥感影像的错断位移恢复结果, 发现最新一次断裂活动的最大右旋走滑位移约2~3m。晚更新世早—中期冲洪积扇体的累积最大右旋走滑位移约44m, 垂直错动约2m, 由此推测该断裂晚第四纪以来走滑速率约1mm/a, 显示弱走滑变形特征。别若则错断裂近NNW的走向与印度和欧亚板块碰撞的主压应力轴( σ1)的夹角约30°, 而已发现的区域性共轭走滑断裂与 σ1呈约60°~75°的较大夹角, 两者显著不同, 表明藏北地区共轭走滑断裂带的组合方式可能存在不同的样式: 一种是钝角, 可能与拉萨和羌塘地体内的剪切作用或块体挤出有关; 另一种是锐角, 可能代表着新生破裂特征, 推测其可能与高原内部近SN向正断层的N向的延伸有关, 其成因机制仍需进一步研究。

关键词: 近EW向伸展变形; 活动断裂; 共轭走滑断裂; 别若则错断裂
中图分类号:P315.2 文献标志码:A 文章编号:0253-4967(2019)02-0436-11
FIRST REPORT OF BERO ZECO ACTIVE FAULT IN GÊRZÊ, NORTHERN TIBET
HA Guang-hao1,2, WU Zhong-hai1, MA Feng-shan3, ZENG Qing-li4, ZHANG Lu-qing3, GAI Hai-long5
1)Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
2)Chinese Academy of Geological Sciences, Beijing 100037, China
3)Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
4)College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
5)Qinghai Earthquake Agency, Xining 810001, China
Abstract

In the interior of the Tibetan Plateau, the active tectonics are primarily marked by conjugate strike slip faults and north-trending rifts, which represent the E-W extension since late Cenozoic of the plateau. The conjugate faults are mainly composed of NE-trending left-lateral strike-slip faults in Qiangtang terrane and NW-trending right-lateral strike-slip faults in Lhasa terrane. While, the rifts mainly strike N, NNW and NNE within southern Tibet. However, it is still a debate on the deformational style and specific adjustment mechanism of E-W extension. One of key reasons causing this debate is the lack of detailed investigation of these active faults, especially within the northwestern plateau. Recently, we found a 20km long, NNW-trending active fault at Bero Zeco in northwestern Tibet. This fault is presented as fault sag ponds, channel offsets and fault scarps. Displacement of channels and geomorphic features suggested that the Bero Zeco Fault(BZF)is a dextral strike-slip fault with a small amount of normal slip component, which may result from the E-W extensional deformation in the interior of Tibet. BZF strikes N330°~340°W, as shown on the satellite image. The main Quaternary strata in the studied area are two stages alluvial fans around the Bero Zeco. From the satellite images, the old alluvial fans were cut by the lake shoreline leaving many of lake terraces. And the young fans cut across the lake terraces and the old fans. By contrasting to the “Paleo-Qiangtang Huge Lake” since late Quaternary, these old alluvial fans could be late Pleistocene with age ranging from 40ka to 50ka. And the young fans could be Holocene. The sag ponds along the BZF are distributed in the late Pleistocene alluvial fans. Also, the BZF displaced the late Pleistocene fans without traces within Holocene fans, suggesting that the BZF is a late Pleistocene active fault. The fault scarps are gentler with the slope angle of around 10° and the vertical offset is about 2m by field measurement. Reconstruction of the offset of channels suggested that the accumulated dextral offset could be about 44m on the late Pleistocene alluvial fans. Therefore, we infer that the dextral slip-rate could be around 1mm/a showing a low-rate deformation characteristic. The angle between the strike of BZF and principal compressive stress axis( σ1)is around 30°, which is significantly different to the other faults within the conjugate strike-slip fault zones that is 60°~75°. Now, the deformation mechanisms on these conjugate faults are mainly proposed in the studies of obtuse angle between the faults and σ1, which is likely not applicable for the BZF. We infer that the BZF could be the northward prolongation of the north-trending rifts based on the geometry. This difference suggests that the conjugate strike-slip faults may be formed by two different groups: one is obtuse angle, which is related to block extrusion or shear zones in Lhasa and Qiangtang terranes possibly; the other is acute angle, which may represent the characteristics of new-born fractures. And more studies are needed on their deformation mechanisms.

Keyword: E-W extensional deformation; active fault; conjugate strike-slip faults; Bero Zeco Fault
0 引言

新生代以来, 印度与欧亚板块的持续碰撞形成了青藏高原这一全球最为活跃的构造带(Molnar et al., 1977, 1978; Tapponnier et al., 1977, 1986; 王成善等, 1998; 许志琴等, 2006)。印度-欧亚板块约40mm/a的SN向会聚速率被喜马拉雅-青藏高原所调节(Paul et al., 2001; Wang et al., 2001), 其中约一半的变形被喜马拉雅造山带的缩短变形所吸收(Bettinelli et al., 2006; Ader et al., 2012), 其余则被青藏高原及其北部的块体所吸收。然而高原内部的变形是集中于边界大型走滑断裂带(Peltzer et al., 1988; Avouac et al., 1993), 还是分布于高原内部众多的小型活动断裂中(England et al., 1985)仍存在争议。前一种观点认为, 大型走滑断裂带, 如喀喇昆仑断裂、 阿尔金断裂等的快速走滑运动吸收了主要的变形; 后一种观点则认为高原内部数量众多的小型断裂通过较低的活动速率吸收了主要的变形。造成这种争议的原因是目前对高原内部及邻区活动断裂的空间几何学特征及活动性的研究程度还比较低。

青藏高原内部最为显著的活动构造是高原中— 南部近SN走向的裂谷和NW、 NE走向的共轭的走滑断层(图1a)(Molnar et al., 1977; Armijo et al., 1986; 1989; Tapponnier et al., 2001; 李康等, 2018)。早期研究认为, NW走向的右旋走滑断裂构成喀喇昆仑-嘉黎断裂带, 是块体挤出的重要边界断裂, 且拉萨地块内近SN向的裂谷是其右旋走滑拉分的结果(Armijo et al., 1989)。Taylor等(2003)通过分析遥感影像与野外地质调查结果认为NE与NW走向的走滑断裂共同组成了共轭的走滑断裂带, 该断裂带通过将小型楔形块体(宽< 150km)向E挤出的方式调节了藏中地壳近同时发生的SN向挤压和EW向伸展变形。之后, 通过物理模拟、 GPS观测分析结合野外地质观察研究发现, 共轭走滑断裂的成因可以用北侧羌塘地体内近EW向的左旋剪切和南侧拉萨地体内近EW向的右旋剪切来解释, 这2个相邻的剪切带形成了2组里德尔剪切, 一组是NE走向的左旋剪切, 另一组是NW走向的右旋剪切(Yin et al., 2011)。形成这种差异的原因是对共轭走滑断裂带的研究程度还较低, 对其几何学、 运动学特征的认识不足, 限制了我们进一步了解其形成机制和其在印度-欧亚碰撞变形带中的作用。

图 1 研究区构造位置简图
a 藏南主要活动构造简图, 修改自文献(Tapponnier et al., 2001; Taylor et al., 2003); b 别若则错及邻区主要活动断裂分布图(底图来自Google Earth影像); c 别若则错断裂空间分布图(底图来自Google Earth影像)。AWF 阿翁错断裂; NWF 纳屋错断裂; CLR 茶里错裂谷(亚热裂谷); LGR 隆格尔裂谷; BQG 捌千错地堑; PTG 碰塔地堑; BZF 别若则错断裂。 Qp3l晚更新世湖相沉积; Qp3al晚更新世冲积。b、 c中白色粗实线表示断裂, 白色虚线表示推测断层的位置, 红色虚线表示别若则错断裂的位置; c中环湖的白色细实线表示湖泊退缩过程中形成的多级湖岸阶地
Fig. 1 Schematic tectonic map of the study area.

近期, 我们在改则县西部别若则错北部发现了一长约20km的走滑断裂, 下文将结合遥感解译与野外地质调查结果对其进行简单报道, 以期加深对共轭走滑断裂带的认识。

1 区域地质背景

在拉萨地块内以班公— 怒江缝合带为轴共轭的走滑断裂带主要有NW走向的崩错断裂、 格仁错断裂、 纳屋错断裂和阿翁错断裂(图1b)(Taylor et al., 2003; 王躲等, 2017), 其中在研究区出露的主要为阿翁错断裂南东段和纳屋错断裂。纳屋错断裂北西端起自布木错, 沿NW走向至纳屋错北岸, 继而自纳屋错南岸沿NW向延伸至文布当桑乡附近(图1b), 总长约150km, 纳屋错为该断裂的拉分盆地。阿翁错断裂位于与纳屋错断裂南侧, 并与之近平行展布(图1b)。区内活动正断层主要为茶里错裂谷(亚热裂谷)、 隆格尔裂谷、 捌千错地堑和碰塔地堑(图1b)(Ha et al., 2018; 哈广浩等, 2018)。捌千错地堑和碰塔地堑位于别若则错南部, 二者在遥感图上表现出显著的线性特征, 呈近SN走向, 长约40km, 分别拉分成宽阔的谷地, 宽约10km, 并有现代湖泊分布(图1b)。研究区晚第四纪地层主要为多级的湖岸阶地与多期冲洪积扇体(图1c)。湖岸阶地主要环湖分布(图1c), 但各级湖岸阶地在空间展布上并不完全平行, 受周围山地所控制, 在地形开阔处湖岸阶地宽缓, 而在山前地形突变处湖岸阶地狭窄乃至尖灭。初步的遥感解译结果显示, 约发育有13级湖岸阶地, 最高一级拔湖40~50m。除此之外, 还有1期冲积扇切割了湖岸阶地, 表明区内冲洪积扇体是多期发育的, 早期与高位湖岸阶地的发育是准同期的, 后期则发育于湖岸退缩之后。赵希涛等(2002)对高原东南部高位湖相地层进行了研究, 认为在晚更新世时期可能发育1个巨大的羌塘古湖, 古湖面海拔可达4i470~4i850m, 现今高原内部各个湖泊多是由羌塘古湖退缩后形成的。这一结果在高原东南部多个湖泊的研究中得到了验证(赵希涛等, 2003, 2005, 2011; 朱大岗等, 2003; Zhu et al., 2010)。同时, 拔湖高度相近的湖岸阶地的年龄也是相近的。测试结果表明, 拔湖40~50m的高湖岸阶地的年龄约50ka, 即形成于晚更新世中期(赵希涛等, 2011)。 与之对比后可知, 研究区内高湖岸阶地及早期冲洪积扇的时代可能为晚更新世中期。

2 别若则错断裂晚第四纪活动特征

我们在别若则错北部发现一走滑断裂, 走向NNW, 延伸至别若则错东岸, 其SEE向显示有线性的谷地分布, 可能是其南延部分, 这里将该断裂命名为别若则错断裂(BZF, 图1c)。别若则错断裂走向约 N330° ~340° W, 主要表现为线性展布的断塞塘、 水系错动及断层陡坎等, 长约20km(图1c)。水系错动及断层崖并未错动全新世冲积扇, 显示别若则错断裂最新一次活动时间可能早于全新世。别若则错北部发育清晰的断塞塘(图2a), 特征显著, 并具有垂向断崖。跨断塞塘的地形剖面测量结果显示垂直断距为2~3m(图2b, c)。断塞塘的发育表明该断裂具有明显的走滑运动。别若则错湖东岸主要由湖岸阶地及晚更新世冲积扇组成(图1c), 在翁隆沟口处可以观察到线性特征显著的断层崖与水系错动。测量发现水系右旋错动8~10m, 与前述断塞塘显示的断裂走滑分量一致; 跨断层崖的地形剖面测量结果显示垂直断距为2~3m。在别若则错北部的老公路旁(图1c)可以观察到多期的水系错动(图3a, b), 该处主要为晚更新世冲洪积扇, 并被后期全新世冲积扇所切割, 但未见断裂错动全新世冲积扇。老公路NW约4km处, 最新一次水系错动使晚更新世冲洪积扇位移2~3m, 这可能代表了该断裂最新一次活动的右旋走滑位移量。同时, 对老公路NW侧进行水系位移恢复, 结果显示该处最大累积右旋走滑位移约44m(图3c— g)。地形剖面测量显示, 垂直断距最小约1m, 最大可达5m, 可能是多次断裂活动的累积位移量。野外地质调查显示, 断层崖坡平缓, 坡角约10° , 断崖断距约2m(图4)。

图 2 断塞塘及地形剖面图
a 右旋走滑断裂形成的断塞塘(底图来自Google Earth); b 跨断裂地形剖面, 位置见图a
Fig. 2 Fault sag ponds and topographic profiles.

图 3 别若则错断裂北部空间展布及累积位移恢复图
a 别若则错断裂错断水系遥感影像图(Google Earth); b 水系及地表破裂遥感解译图(Google Earth); c— g 利用水系恢复别若则错断裂右旋走滑运动多期位移(Bing遥感影像)
Fig. 3 Distribution of the northern Bero Zeco Fault and reconstruction of accumulated offsets of the fault.

图 4 别若则错断裂断层崖, 错动晚更新世冲洪积扇(θ 断崖坡角)Fig. 4 Photos of fault scarps formed by the BZF(θ : slope angle of fault scarp).

3 讨论

别若则错断裂错断的最新地层为晚更新世冲积砾石层, 没有错断全新世冲积物, 并且全新世冲积扇切割早期的冲洪积扇, 因此该活动断裂最新一次活动时间可能较早。通过前述的位移恢复发现, 晚更新世冲积砾石层的累积位错可达44m, 如果对比藏东南古湖岸阶地年龄, 以40~50kaiBP作为该期冲洪积扇的年代, 那么别若则错断裂晚更新世以来的右旋走滑速率约1mm/a, 比通过地质学方法估算的研究区内其他走滑断裂的长时间活动速率(2~4mm/a)(Taylor et al., 2003)略小, 但显著小于InSAR的观测结果(约6mm/a)(Taylor et al., 2006)。而共轭走滑断裂带东部的崩错断裂右旋走滑速率可以达到约10mm/a(Armijo et al., 1989; 吴中海等, 2006), 较小的观测结果约4mm/a(Garthwaite et al., 2013); 同样, 格仁错断裂的走滑速率约10~20mm/a(Armijo et al., 1989; Chung et al., 2015), 较小的观测结果约4~5mm/a(杨攀新等, 2010, 2012; Shi et al., 2015)。与崩错和格仁错断裂相比, 别若则错断裂的活动速率显著偏小。此外, 别若则错断裂走向近 N330° ~340° W, 与南侧碰塔地堑非常接近(图1b), 与印度-欧亚板块SN向碰撞形成的主压应力轴σ 1的夹角约30° , 而共轭走滑断裂带中其它断裂与σ 1呈约60° ~75° 的较大夹角(Taylor et al., 2003; Yin et al., 2011), 两者显著不同。以上现象表明青藏高原中部共轭的走滑断裂带结构复杂, 除NWW走向的右旋走滑断裂外, 还包含有NNW走向的右旋走滑断裂, 且断裂的活动性在东、 西侧存在差异, 东侧断裂活动性较高, 而西侧较小。

在刚性块体侧向挤出模式中, 块体向E的依次挤出导致高原中部出现NE、 NW向走滑断裂(Tapponnier et al., 1982; Peltzer et al., 1988); 也有研究认为, 这种走滑断裂初始与主压应力轴σ 1呈约30° 的夹角, 而后在纯剪切变形作用下围绕σ 1发生了旋转(Dewey et al., 1988)。此外, 沿着先存的断裂或薄弱带的新生断裂也可能产生不符合库伦破裂准则的断层(Yin et al., 1992)。最近, 也有研究使用羌塘和拉萨地体内分别向E的左旋和右旋剪切作用来解释共轭走滑断裂的形成机制(Yin et al., 2011)。然而, 这些模式都是基于与σ 1呈约60° ~75° 夹角的共轭走滑断裂带的几何形态提出的, 别若则错断裂显然不符合这种要求。因此, 别若则错断裂可能是一种新生破裂, 可能与高原内部近SN向正断层的N向延伸有关, 是高原内部近EW向伸展变形的产物。当然, 这仅仅是基于其几何形态的一种简单推测, 其成因机制需要更详细的几何学、 运动学的调查与研究。

4 结论

最新的地表调查在藏北高原西部别若则错新发现了1条走向近NNW的活动断裂。该断裂具有断塞塘、 水系错动及断层崖等走滑断裂变形标志。水系错动及构造地貌显示, 别若则错断裂是以右旋走滑运动为主、 兼具明显正断分量的张扭性断层。测量显示该断裂最新一次活动的最大右旋走滑位移约2~3m, 累积走滑位移约44m, 垂直位移约2m。如果以青藏高原晚更新世古大湖的古湖岸阶地年龄作为对比, 那么该断裂晚更新世以来的右旋走滑速率约1mm/a, 显著低于共轭走滑断裂带东部的断裂。同时, 该断裂走向近NNW, 与印度-欧亚板块SN向碰撞形成的主压应力轴(σ 1)夹角约30° , 不同于共轭走滑断裂带中其他断裂与σ 1呈约60° ~75° 大夹角的形态。因此, 共轭走滑断裂带的组合方式可能存在不同样式: 一种是钝角, 可能与拉萨和羌塘地体内的剪切作用或块体挤出有关; 另一种是锐角, 可能代表着新生破裂特征, 推测其可能与高原内部近SN向正断层的N向延伸有关, 其成因和机制仍需要进一步研究。

The authors have declared that no competing interests exist.

参考文献
1 哈广浩, 吴中海, 何林. 2018. 藏南邛多江地堑的晚新生代沉积地层及对SN向裂谷形成时代的初步限定[J]. 地质学报, 92(10): 20512067. [本文引用:1]
2 HA Guang-hao, WU Zhong-hai, HE Lin. 2018. Late Cenozoic sedimentary strata of Qiongduojiang graben, southern Tibet: Preliminary constraint on the initial rifting age of SN-trending rift[J]. Acta Geologica Sinica, 92(10): 20512067(in Chinese). [本文引用:1]
3 李康, 王躲, 邵庆丰, . 2018. 青藏高原中部NE向其香错断裂全新世左旋走滑速率及其构造意义[J]. 地震地质, 40(6): 12041215. doi: 10.3969/j.issn.0253-4967.2018.06.002. [本文引用:1]
4 LI Kang, WANG Duo, SHAO Qing-feng, et al. 2018. Holocene slip rate along the NE-trending Qixiang Co Fault in the central Tibetan Plateau and its tectonic implications[J]. Seismology and Geology, 40(6): 12041215(in Chinese). [本文引用:1]
5 王成善, 丁学林. 1998. 青藏高原隆升研究新进展综述[J]. 地球科学进展, 13(6): 526532. [本文引用:1]
6 WANG Cheng-shan, DING Xue-lin. 1998. The new researching progress of Tibet plateau uplift[J]. Advance in Earth Sciences, 13(6): 526532(in Chinese). [本文引用:1]
7 王躲, 尹功明, 韩非, . 2017. 格仁错断裂带流域地貌特征及其构造指示意义[J]. 地震地质, 39(2): 304322. doi: 10.3969/j.issn.0253-4967.2017.02.004. [本文引用:1]
8 WANG Duo, YIN Gong-ming, HAN Fei, et al. 2017. Geomorphology of the Gyaring Co Fault zonal drainage system and its structural implications[J]. Seismology and Geology, 39(2): 304322(in Chinese). [本文引用:1]
9 吴中海, 吴珍汉, 胡道功, . 2006. 青藏铁路唐古拉山—拉萨段全新世控震断裂研究[J]. 地质通报, 25(12): 13871401. [本文引用:1]
10 WU Zhong-hai, WU Zhen-han, HU Dao-gong, et al. 2006. Holocene seismogenic faults along the Tanggula-Lhasa section of the Qinghai-Tibet Railway, China[J]. Geological Bulletin of China, 25(12): 13871401(in Chinese). [本文引用:1]
11 许志琴, 杨经绥, 李海兵, . 2006. 青藏高原与大陆动力学: 地体拼合、 碰撞造山及高原隆升的深部驱动力[J]. 中国地质, 33(2): 522. [本文引用:1]
12 XU Zhi-qin, YANG Jing-shui, LI Hai-bing, et al. 2006. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau[J]. Geology in China, 33(2): 522(in Chinese). [本文引用:1]
13 杨攀新, 陈正位, 张俊, . 2010. 西藏中部格仁错断裂带错嘎错—那拉错段细结构及活动性[J]. 第四纪研究, 30(5): 10121019. [本文引用:1]
14 YANG Pan-xin, CHEN Zheng-wei, ZHANG Jun, et al. 2010. Structure and activity between Cuoga Co and Nala Co of the Gyaring Co fault belt in central Tibet Plateau[J]. Quaternary Sciences, 30(5): 10121019(in Chinese). [本文引用:1]
15 杨攀新, 陈正位, 张俊, . 2012. 西藏中南部格仁错断裂张剪性质及其区域动力学意义[J]. 地球物理学报, 55(10): 32853295. [本文引用:1]
16 YANG Pan-xin, CHEN Zheng-wei, ZHANG Jun, et al. 2012. The tension-shear of Gyaring Co Fault and the implication for dynamic model in south-central Tibet[J]. Chinese Journal of Geophysics, 55(10): 32853295(in Chinese). [本文引用:1]
17 赵希涛, 吴中海, 胡道功, . 2005. 西藏错鄂及邻区晚更新世高位湖相沉积的发现及其意义[J]. 地球学报, 26(4): 291298. [本文引用:1]
18 ZHAO Xi-tao, WU Zhong-hai, HU Dao-gong, et al. 2005. The discovery of late Pleistocene high stand s lacustrine sediments of the Co Ngoin Lake and adjacent areas, Tibet[J]. Acta Geoscientica Sinica, 26(4): 291298(in Chinese). [本文引用:1]
19 赵希涛, 赵元艺, 郑绵平, . 2011. 班戈错晚第四纪湖泊发育、 湖面变化与藏北高原东南部末次大湖期湖泊演化[J]. 地球学报, 32(1): 1326. [本文引用:1]
20 ZHAO Xi-tao, ZHAO Yuan-yi, ZHEN Mian-ping, et al. 2011. Late Quaternary lake development and denivellation of Bankog Co as well as lake evolution of southeastern North Tibetan Plateau during the last Great Lake Period[J]. Acta Geoscientia Sinica, 32(1): 1326(in Chinese). [本文引用:1]
21 赵希涛, 朱大岗, 吴中海, . 2002. 西藏纳木错与仁错-久如错连通的地质记录[J]. 第四纪研究, 22(2): 195. [本文引用:1]
22 ZHAO Xi-tao, ZHU Da-gang, WU Zhong-hai, et al. 2002. Geological records on the connection of Nom Co Lake with Ren Co-Jiuru Co Lakes, Tibet[J]. Quaternary Sciences, 22(2): 195(in Chinese). [本文引用:1]
23 赵希涛, 朱大岗, 严富华, . 2003. 西藏纳木错末次间冰期以来的气候变迁与湖面变化[J]. 第四纪研究, 23(1): 4253. [本文引用:1]
24 ZHAO Xi-tao, ZHU Da-gang, YAN Fu-hua, et al. 2003. Climatic change and lake-level variation of Nam Co, Xizang since the last interglacial stage[J]. Quaternary Sciences, 23(1): 4253(in Chinese). [本文引用:1]
25 朱大岗, 赵希涛, 孟宪刚, . 2003. 西藏纳木错晚更新世以来湖面变化和藏北高原古大湖的演化[J]. 地质通报, 22(11-12): 918927. [本文引用:1]
26 ZHU Da-gang, ZHAO Xi-tao, MENG Xian-gang, et al. 2003. Lake-level fluctuation of Nam Co, Tibet, since the late Pleistocene, and evolution of an ancient large lake on the northern Tibetan Plateau[J]. Geological Bulletin of China, 22(11-12): 918927(in Chinese). [本文引用:1]
27 Ader T, Avouac J P, Liu-Zeng J, et al. 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard[J]. Journal of Geophysical Research: Solid Earth, 117(B4): B04403. [本文引用:1]
28 Armijo R, Tapponnier P, Han T L. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 94(B3): 27872838. [本文引用:4]
29 Armijo R, Tapponnier P, Mercier J L, et al. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 91(B14): 1380313872. [本文引用:1]
30 Avouac J P, Tapponnier P. 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895898. [本文引用:1]
31 Bettinelli P, Avouac J P, Flouzat M, et al. 2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements[J]. Journal of Geodesy, 80(8-11): 567589. [本文引用:1]
32 Chung L, Chen Y G, Cao Z, et al. 2015. Rapid slip of the Gyaring Co Fault in Central Tibet[C]. EGU General Assembly 2015, Vienna, Austria. [本文引用:1]
33 Dewey J F, Shackleton R M, Chang C F, et al. 1988. The tectonic evolution of the Tibetan Plateau[J]. Philosophical Transaction of Royal Society of London, 327: 379413. [本文引用:1]
34 England P, Houseman G. 1985. Role of lithospheric strength heterogeneities in the tectonics of Tibet and neighboring regions[J]. Nature, 315(6017): 297301. [本文引用:1]
35 Garthwaite M, Wang H, Wright T. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan Plateau observed using InSAR[J]. Journal of Geophysical Research: Solid Earth, 118(9): 50715083. [本文引用:1]
36 Ha G, Wu Z, He L, et al. 2018. Late Cenozoic sedimentary evolution of Pagri-Duoqing Co graben, southern end of Yadong-Gulu Rift, southern Tibet[J]. Acta Geologica Sinica(English Edition), 92(3): 972987. [本文引用:1]
37 Molnar P, Tapponnier P. 1977. The collision between India and Eurasia[J]. Scientific American, 236(4): 3041. [本文引用:2]
38 Molnar P, Tapponnier P. 1978. Active tectonics of Tibet[J]. Journal of Geophysical Research: Solid Earth, 83(B11): 53615375. [本文引用:1]
39 Paul J, Bürgmann R, Gaur V, et al. 2001. The motion and active deformation of India[J]. Geophysical Research Letters, 28(4): 647650. [本文引用:1]
40 Peltzer G, Tapponnier P. 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia collision: An experimental approach[J]. Journal of Geophysical Research, 93(B12): 1508515117. [本文引用:2]
41 Shi X, Kirby E, Lu H, et al. 2015. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41(16): 58295837. [本文引用:1]
42 Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China[J]. Journal of Geophysical Research, 82(20): 29052930. [本文引用:1]
43 Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia[J]. Geological Society, London, Special Publications, 19(1): 113157. [本文引用:1]
44 Tapponnier P, Peltzer G, Le Dain A Y, et al. , 1982, Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611616. [本文引用:1]
45 Tapponnier P, Xu Z, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 16711677. [本文引用:1]
46 Taylor M, Peltzer G. 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research: Solid Earth, 111: B12402. doi: 10.1029/2005JB004014. [本文引用:1]
47 Taylor M, Yin A, Ryerson F J, et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau[J]. Tectonics, 22(4): 10441068. [本文引用:4]
48 Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by Global Positioning System measurements[J]. Science, 294: 574577. [本文引用:1]
49 Yin A, Taylor M H. 2011. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation[J]. Geological Society of America Bulletin, 123(9-10): 17981821. [本文引用:3]
50 Yin Z M, Ranalli G. 1992. Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems[J]. Journal of Structural Geology, 14(2): 237244. doi: 10.1016/0191-8141(92)90060-A. [本文引用:1]
51 Zhu D G, Meng X, Zhao X T, et al. 2010. Evolution of an ancient large lake in the southeast of the northern Tibetan Plateau[J]. Acta Geologica Sinica(English Edition), 78(4): 982992. [本文引用:1]