〔作者简介〕 韩凌飞, 男, 1990年生, 中国地质大学(北京)矿物学、 岩石学、 矿床学专业在读博士研究生, 研究方向为岩浆演化与资源环境, 电话: 18500190710, E-mail: hanlingf@yeah.net。
长白山千年大喷发火山灰覆盖面积极广, 广泛分布于日本海及日本半岛等地, 在9000km以外的格陵兰地区也有这层火山灰的产出, 是1个非常重要的等时标志层。文中在长白山NW约45km泉阳泥炭沉积物(64cm)中发现一火山灰层, 放射性14C定年结果为886—1013cal AD(95.4%), 火山玻璃主量元素的地球化学特征显示其为碱流质, 与长白山千年大喷发火山灰碱流质端元十分吻合, 确定为长白山千年大喷发的产物。文中的研究结果说明, 这次火山喷发产生的火山灰向NW向已经飘散至约45km以外的泉阳地区, 另外, 鉴于火山灰中浮岩颗粒粒径可达0.3cm, 说明此次火山喷发产生的火山灰可能向W飘散至更远的地区, 从而在更广大的区域上形成等时标志层。千年大喷发泉阳泥炭火山灰与四海龙湾、 日本等地以及格陵兰冰芯中的火山灰具有不完全一致的火山玻璃主量元素组成, 泉阳泥炭中的火山物质在成分上与典型的空降浮岩有所不同, 而是与此次火山喷发的松散火山碎屑流更为接近。
Tephra, usually produced by explosive eruptions, is deposited rapidly, hence, it can serve as a distinctive and widespread synchronous marker horizon correlating terrestrial, marine and ice core records. The tephra from Changbaishan Millennium eruption, a widely distributed tephra, is an important marker bed across the Japan Sea, Japan Islands and even in the Greenland ice cores 9000km away from volcanic vent. In this study, a discrete tephra was identified in the Quanyang peat~45km northeast to the Changbaishan volcano. Radiocarbon14C dating on the plant remains constrains an age of 886—1013ca 1AD(95.4%)to the tephra layer, which can correspond to the Millennium eruption of Changbaishan in time. In addition, there was no similar volcanic eruption in the surrounding areas except Changbaishan at the same time. This tephra shows rhyolitic glass shards major element compositions similar to those rhyolitic tephra from Millennium eruption. This study illustrates that tephra from Millennium eruption has been transported to Quanyang peat~45km northwest to the Changbaishan volcano. Additionally, the diameter of the pumice lapilli is up to 0.3cm, implying that the tephra must be transported more distal away from Quanyang peat and formed a widely distributed isochronic layer. Glass geochemistry of the Quanyang tephra, different from the distal tephra recorded at Sihailongwan, Japan, and Greenland ice, shows a close affinity to the pyroclastic flow deposits of the Millennium eruption while not from fall deposits. This may indicate that distribution of the Millennium eruption of Changbaishanin in different directions may be controlled by different stages of eruption. This layer with well-defined annual results can be used to optimize the chronological framework of the corresponding sedimentary environment, thus facilitating more accurate discussion of corresponding environmental changes, which can achieve the contrast of the ancient climate records in the whole Northeast China-Japan and arctic regions.
爆炸式火山喷发往往产生大量的火山碎屑物质, 这些火山碎屑物质可以统称为火山灰(Tephra), 而粒径< 2mm的火山碎屑物则称为狭义的火山灰(Ash)(White et al., 2006; Lowe, 2011)。大规模火山喷发产生的火山灰可以沉降在距离火山口几百到几千km的地区, 同时, 相对其他地质事件而言, 从火山喷发至火山灰沉降所经历的时间是 “ 瞬时” 的, 这样, 同一次火山喷发所产生的火山灰在空间上会形成1个等时的标志层, 通过与区域上其他火山灰层进行层位对比, 可建立更加完整的火山喷发序列, 另外, 这些火山灰层也可以为古环境研究等提供对比参考标志(隋淑珍等, 2003; Davies et al., 2010; Lowe, 2011; Lane et al., 2013; 陈宣谕等, 2014; Sigl et al., 2015; Chen et al., 2016; Sun et al., 2017a)。根据现代火山喷发观测数据可知, 火山喷发过程中火山灰的飘散过程是极为复杂的, 对比分析不同方向上火山灰的成分特征, 可了解相应火山喷发火山灰的飘散过程(Davies et al., 2010; Smith et al., 2013)。
长白山地处中朝边界, 是中国最大的一座层状复式火山, 由于在1000AD左右长白山天池火山曾发生过1次规模巨大的火山喷发, 因此, 常将其称为千年大喷发, 此次喷发被认为是世界范围内2000a以来规模最大的火山喷发之一, 喷发规模可以与印度尼西亚1815年Tambora火山喷发相媲美(刘嘉麒, 1999; Liu et al., 2001; Wei et al., 2003; Zou et al., 2010)。该次喷发产生了近100km3的火山碎屑物, 成分以流纹质(碱流质)为主, 其次为粗面质火山碎屑(刘若新等, 1996; 樊祺诚等, 1999, 2005; 郭正府等, 2005), 在火山锥体周围数十km内都分布有该次喷发的火山碎屑(刘嘉麒, 1999; Horn et al., 2000; Liu et al., 2001; Wei et al., 2003)。在1000km外的日本海深海沉积物钻孔、 日本湖泊及泥炭沉积物以及库页岛弧等地均发现了此次喷发的火山灰, 即为B-Tm(Baegdusan-Tomakomai)火山灰层(Machida et al., 1983, 1990; Furuta et al., 1986; Horn et al., 2000; Nanayama et al., 2003; Kamite et al., 2010; Yatsuzuka et al., 2010; Okuno et al., 2011; Hughes et al., 2013; Smith et al., 2013; Chen et al., 2016; Mclean et al., 2016), 在长白山西侧的龙岗地区也有发现千年大喷发火山灰的报道(郭正府等, 2005; Liu et al., 2009; Sun et al., 2014b, 2015, 2016, 2017b)。另外, 在
本研究在长白山NW泉阳泥炭沉积物(42° 21'N, 127° 45'E)中(深64cm处)发现了1层不连续的火山灰(图1), 并对该层火山灰所在层位的陆生植物残体进行放射性14C定年及火山灰地球化学分析。由于不同的火山或者同一火山不同期次喷发的火山碎屑物的地球化学特征均有不同程度的差异, 利用电子探针分析技术获得火山灰的地球化学特征, 并结合已有的火山喷发背景资料等确定火山灰的来源, 联合年代学对比, 即可建立区域地层的年代学架构。同时, 比较不同环境沉积地层中的火山灰可以建立时间地层格架, 这对于进行古环境、 古气候及考古学等各种研究有重要的意义。
对泉阳泥炭沉积物进行间隔为1cm的连续取样, 由于泥炭沉积物根系等有机质含量较高, 未出现明显的肉眼可见的连续火山灰层, 在钻孔深64cm处发现数粒(20~25颗/cm3)大小不等的浮岩颗粒(图1), 这些浮岩颗粒夹杂在泥炭沉积物之中, 而在深63cm和65cm处未发现大颗粒浮岩, 说明了64cm为火山灰层。将这些浮岩颗粒首先加入30%的H2O2静置24h, 用于除去粘附在浮岩之上的有机质, 然后再加入10%的稀盐酸(HCl)静置12h, 用于去除可溶性碳酸盐等无机盐。
对经过化学处理之后的浮岩用蒸馏水清洗并烘干, 然后进行探针片制定, 再用电子探针(EPMA)测试火山灰中火山玻璃的主量元素组成。 测试在中国科学院地质与地球物理研究所岩石圈国家重点实验室完成, 分析仪器为JEOL JXA 8100, 分别分析了Na、 Mg、 Al、 Si、 P、 K、 Ca、 Fe、 Ti、 Mn 10个主量元素, 每个元素的分析时间为20s, 电压为15kV, 电流为6nA, 电子束斑直径为10μ m。
在火山灰层的位置挑选了陆生植物残体, 然后准备进行放射性14C测年。测年样品依次用稀盐酸(HCl)和NaOH处理, 最后使用蒸馏水洗涤至中性。对经化学处理之后的样品用加速器质谱技术进行放射性14C测年, 测试单位为美国佛罗里达州Beta放射性分析实验室。
火山玻璃主量元素测试结果(标准化处理后)显示(表1, 表2): SiO2、 Al2O3、 TFeO、 CaO、 Na2O、 K2O、 TiO2的含量变化范围分别为71.25%~76.68%、 10.97%~14.00%、 4.09%~4.54%、 0.21%~0.61%、 3.39%~4.62%、 4.00%~4.57%、 0.16%~0.31%。TAS图解(图2)显示, 泉阳泥炭沉积物中火山玻璃的成分为流纹质, ALK(Na2O+K2O)值较高, 范围为7.41%~9.18%, 属于富碱类; K2O/Na2O的范围为0.89%~1.19%。近源的长白山地区, 远源的日本及日本岛地区、 格陵兰冰芯以及四海龙湾地区发现的千年大喷发火山灰(图2)成分从粗面岩转变为流纹岩。
泉阳泥炭64cm深处14C测年结果为(3130± 30)a BP, 矫正结果为886— 1013caliAD(95.4%), 综合前人有关千年大喷发的测年结果(表3), 泉阳泥炭中该层火山灰的年龄与长白山千年大喷发的时间能够很好地吻合。
长白山火山锥体及周边的火山碎屑喷发物的厚度可达百m, 主要是东坡的灰白色空降浮岩以及填充在鸭绿江大峡谷、 锦江大峡谷等谷地中的火山碎屑流, 前人根据这些火山碎屑的类型及化学成分, 将此次火山喷发大体上分为喷发碱流质火山碎屑和粗面质火山碎屑2个阶段(Horn et al., 2000)。而且, 中国东北四海龙湾、 日本海、 日本岛弧以及格陵兰冰芯中有关千年大喷发火山灰的研究显示, 此次火山喷发的火山灰也应该同时具有粗面质和碱流质的2种火山玻璃成分(Furuta et al., 1986; Machida et al., 1990; Hughes et al., 2013; Sun et al., 2014a, 2015; Chen et al., 2016; Mclean et al., 2016)。
本文所得的结果显示, 泉阳泥炭浮岩颗粒与长白山火山锥体周边的灰白色浮岩具有一致的碱流质火山玻璃成分, CaO、 TFeO、 TiO2、 K2O等含量相近(图3), 而且这样的碱流质成分可以很好地与千年大喷发近源— 远源的火山灰相对应(表2, 图3)。同时代日本及周边没有这样类似的火山喷发产物, 只有长白山千年大喷发产生过类似成分的浮岩, 因此, 泉阳泥炭中的浮岩无疑来自于长白山千年大喷发。前人的研究显示, 长白山千年大喷发近源的天文峰附近灰白色浮岩具有高度均一的碱流质火山玻璃, 暗色浮岩具有均一的粗面质火山玻璃(Zou et al., 2010; Chen et al., 2016; Sun et al., 2016, 2017b), 而缺少2个端元之间的过渡成分。
通过对比远源— 近源火山灰地球化学组成, 我们发现泉阳泥炭中的火山灰具有均一性较差的火山玻璃成分, 有向粗面质火山玻璃过渡的趋势, 这与典型的天文峰剖面的灰白色浮岩不一致。分析认为, 天文峰剖面的浮岩代表的是典型的空降浮岩, 这样均一性较好的浮岩可以很好地与日本Suigetsu湖沉积的千年大喷发火山灰相对应(Mclean et al., 2016)。而泉阳泥炭中的火山灰并不是这类典型的空降浮岩, 可能与前人所述的长白山千年大喷发阶段一中的松散火山碎屑流相一致(Horn et al., 2000)。在长白山北坡奶头村浮岩采石场可以见到这样松散的火山碎屑流堆积, 这与长白山东坡典型的空降浮岩不同。 另外, 泉阳泥炭中的火山灰具有与奶头村浮岩相似的不均一的碱流质火山玻璃, 长白山西坡的小沙河火山碎屑流也具有类似的碱流质火山玻璃(Oppenheimer et al., 2017; Sun et al., 2017b)。这些松散的火山碎屑流堆积物可能分布在距离火山口至少约 45km范围内的地区, 这些沉积物中包含不同火山玻璃成分的火山灰层, 例如本文所述及的含碱流质火山玻璃的泉阳泥炭、 以粗面质火山玻璃为主的四海龙湾沉积物、 以碱流质火山玻璃为主的Suigetsu湖和以粗面质-碱流质火山玻璃为主的Kushu湖沉积物等, 可能说明了千年大喷发火山灰分布在不同方向上是由不同阶段的喷发过程所控制的。
长白山千年大喷发的定年问题一直备受争论, 不同定年方法所得到的喷发年代都有较大出入(表3)。通过格陵兰冰芯中发现的千年大喷发火山灰, 可将此次火山喷发的时间确定为(940± 1)AD或(945± 4)AD, 近年来结合树轮和冰芯记录将此次火山喷发的年龄推算至946AD(Xu et al., 2013; Sun et al., 2014a; Oppenheimer et al., 2017)。因此, 当发现该次火山喷发的火山灰层时, 其位置的年代即可确定为946AD。
具有精确定年结果的火山灰层可以用于优化相应沉积环境的年代学框架, 为更加精准地讨论相应的环境变化提供便利(Lane et al., 2013; Chen et al., 2016)。因此, 在古气候-古环境研究中, 标定千年大喷发火山灰层的位置, 利用该次喷发的精确定年结果, 即可优化泉阳泥炭沉积物的年代学格架。近代火山喷发由于受到定年方法以及定年材料的限制, 很难得到相应的火山喷发年代(Lowe, 2011), 本文的研究结果显示, 利用沉积物中记录的火山灰层, 结合相应沉积物的年龄结果, 可以间接地得到火山灰层的年龄, 即可得到对应火山喷发的年代。
中国东北地区沉积物类型广泛, 如四海龙湾、 小龙湾等地区的高分辨率的玛珥湖沉积物, 哈尼、 金川、 三江平原等地区的泥炭沉积物, 这些沉积物为古气候的重建提供了有力证据(Jiang et al., 2008; Zhou et al., 2010; 赵宏丽等, 2012; Chu et al., 2014; Stebich et al., 2015; Cong et al., 2016)。泉阳泥炭中的浮岩颗粒粒径可达0.3cm, 这说明这次火山喷发产生的火山灰可能飘散至更远的地区, 如敦化吉祥和三江平原等地区的泥炭沉积物中也可能含有该层火山灰。如果这种火山灰均可在这些地区发现, 那么, 这将是一层非常重要的等时标志, 通过它即可对中国东北地区、 日本以及北极地区的古气候记录进行对比关联。
在长白山NW约45km的泉阳泥炭中发现1层肉眼可见非连续的火山灰层, 放射性14C定年限定了此层火山灰的生成年代为886— 1013caliAD(95.4%), 时间上可以与长白山千年大喷发相对应。这层火山灰具有碱流质的火山地球化学特征, 与千年大喷发的近源和远源的火山灰成分相似, 可以与此次火山喷发阶段一中的松散火山碎屑流相对应(Horn et al., 2000; Sun et al., 2017b), 说明这层火山灰是此次火山喷发的产物。通过本文的研究结果可以推断长白山千年大喷发的火山灰可能向W飘散至更远的地区, 可以为今后建立更大范围的等时标志提供研究依据。
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|