青藏高原中部NE向其香错断裂全新世左旋走滑速率及其构造意义
李康1), 王躲1), 邵庆丰2), 徐锡伟1),3)
1)中国地震局地质研究所, 活动构造与火山重点实验室, 北京 100029
2)南京师范大学地理科学学院, 南京 210023
3)中国地震局地壳应力研究所, 地壳动力学重点实验室, 北京 100085

〔作者简介〕李康, 男, 1985年生, 2016年于中国地震局地质研究所获构造地质学博士学位, 助理研究员, 研究方向为活动构造与地震地质, 电话: 010-62009032, E-mail: likang8899@aliyun.com

摘要

青藏高原中部NE向断裂滑动习性的研究缺失制约着我们对青藏高原中部变形模型的理解。文中选取InSAR结果为右旋走滑的NE向其香错断裂为研究对象, 通过Google Earth卫星影像解译, 选取了1个典型断错地貌点, 利用无人机航拍结合RTK-GPS地面控制点测量获取了高精度、 高分辨率的DEM, 利用LaDiCaoz_v2.1软件自动提取的T2地貌面上最大冲沟的水平左旋位错为(21.3±7.1)m, 跨断层陡坎剖面揭示了T2地貌面的垂直位错量为(0.9±0.1)m。在T2地貌面上采集的2个U系测年样品的年龄分别为(4.98±0.17)ka和(5.98±0.07)ka。上述数据约束了其香错断裂全新世左旋走滑速率约为(3.56±1.19)mm/a, 垂向滑动速率约为(0.15±0.02)mm/a。其香错断裂左旋走滑带有倾向分量的运动学特征与青藏高原中部地壳物质向E运移的特征相符合, 其运动速率与其共轭断裂(格仁错断裂)基本一致, 显示出青藏高原中部变形样式符合共轭走滑断裂模式。

关键词: 青藏高原中部; 其香错断裂; 左旋走滑; 共轭走滑断裂; 滑动速率
中图分类号:P315.2 文献标志码:A 文章编号:0253-4967(2018)06-1204-12
HOLOCENE SLIP RATE ALONG THE NE-TRENDING QIXIANG CO FAULT IN THE CENTRAL TIBETAN PLATEAU AND ITS TECTONIC IMPLICATIONS
LI Kang1), WANG Duo1), SHAO Qing-feng2), XU Xi-wei1),3)
1)Key Laboratory of Active Tectonics and Volcano, Institute of Geology, China Earthquake Administration, Beijing 100029, China
2)Key Laboratory of Virtual Geographic Environment(Nanjing Normal University), Ministry of Education, Nanjing 210023, China
3)Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China
Abstract

The two mainstream deformation models of the Tibet plateau are continental escape model and crustal thickening model, the former suggests that the NW-trending Karakoram Fault, Gyaring Co Fault, Beng Co Fault and the Jiali Fault as the Karakoram-Jiali fault zone is the southern border belt and that the dextral strike-slip rate is estimated as up to 10~20mm/yr. However, research results in recent years show that the slip rates along those faults are significantly less than earlier estimates. Taylor et al.(2003)suggest that the conjugate strike-slip faults control the active deformation in the central Tibet.
The lack of research on the slip behavior of the NE-trending faults in the central Tibet Plateau constrains our understanding of the central Tibet deformation model. Thus, we choose the NE-direction Qixiang Co Fault located at the north of the Gyaring Co Fault as research object. Based on the interpretation of satellite images, we found several faulted geomorphic sites. Using RTK-GPS ground control point and unmanned aerial vehicle(UAV)topographic surveying, we obtained less than 10cm/pix-resolution digital elevation model(DEM)in the Yaqu town site. We used the LaDiCaoz_v2.1 software to automatically extract the left-lateral offset of the largest gully on the terrace T2 surface, which is(21.3±7.1)m, and the vertical dislocation of the scarp on the terrace T2 surface, which is (0.9±0.1)m. The age of both U-series dating samples on the terrace T2 is (4.98±0.17)ka and(5.98±0.07)ka, respectively. The Holocene left-lateral slip rate along Qixiang Co Fault is (3.56±1.19)mm/a and the vertical slip rate is (0.15±0.02)mm/a. The kinematic characteristics of the sinistral strike-slip with normal slip coincide with the eastward motion of the central Tibet plateau, and its magnitude is in agreement with its conjugate Gyaring Co Fault, suggesting that the deformation pattern of the central Tibetan plateau complies with the conjugate strike-slip faults mode.

Keyword: central Tibet plateau; Qixiang Co Fault; sinistral strike-slip; conjugate fault system; slip rates
0 引言

大约距今55Ma 前, 印度板块与欧亚板块碰撞后持续的向N推挤和楔入作用, 造成了1i500~2i600km 的南北会聚(Molnar et al., 1975; Patriat et al., 1984; Klootwijk et al., 1992; 王二七等, 2001; 许志琴等, 2011), 形成了平均海拔约4i800m的青藏高原。青藏高原中部变形最显著的特征为大地测量学及地质学研究均显示出喜马拉雅造山带以北的高原地壳物质向E运移(Armijo et al., 1989; Tapponnier et al., 2001; Wang et al., 2001; Zhang et al., 2004; Gan et al., 2007; Liang et al., 2013)。大陆逃逸模型(Tapponnier et al., 1976, 2001)和地壳增厚模型(England et al., 1982; 张培震等, 2003)是解释青藏高原变形的2种主流模型, 其中大陆逃逸模型把NW-SE向的喀喇昆仑断裂、 格仁错断裂、 崩错断裂、 嘉黎断裂组成的喀喇昆仑-嘉黎断裂带作为高原挤出的南部边界带, 推测其右旋走滑速率达10~20mm/a(Armijo et al., 1989)。国内外学者对喀喇昆仑-嘉黎断裂带的长期滑动速率开展了大量的研究工作, 认为喀喇昆仑断裂的滑动速率> 3~8mm/a(李海兵等, 2006; Chevalier et al., 2015); 格仁错断裂< 5mm/a(杨攀新等, 2012; Shi et al., 2014; Wang et al., 2016; 王躲, 2018); 崩错断裂估计为10.5mm/a(吴中海等, 2006); 嘉黎断裂西北段可达10mm/a, 中段为2~4mm/a(任金卫等, 2000; 沈军等, 2003)。这些速率似乎达不到早期估计的量级。

Taylor 等(2003)在分析遥感影像、 数字地貌数据、 解译地质图和野外填图的基础上, 提出青藏高原中部变形样式受共轭走滑断裂带控制, 认为大陆逃逸模型提出的上述几支断裂实际上直接与班公-怒江缝合带以北的NE向左旋走滑断裂组成共轭走滑断裂带, 长达1i200km, 宽达300km。然而, 迄今为止, NE向左旋走滑断裂的晚第四纪滑动速率研究还是空白, 而其香错断裂没有直接的断错地貌证据。Garthwaite等(2013)利用InSAR方法得到其香错断裂10a尺度的现今应变右旋速率为(6± 1)mm/a, 这与其香错断裂作为共轭走滑断裂系北支(Taylor et al., 2003, 2006, 2009)长期应具有左旋走滑的滑动习性相矛盾。那么, 为了解其香错断裂长期的滑动速率及运动学方式, 需要进一步开展研究工作。

图1 青藏高原中部及邻区活动构造图(构造改自Taylor et al., 2009; GPS数据来自Gan et al., 2007)
ATF 阿尔金断裂; BCF 崩错断裂; BF 别错断裂; GCF 格仁错断裂; JF 嘉黎断裂; KF 喀喇昆仑断裂; KLF 昆仑山断裂; LCF 拉姆措断裂; LGF 龙木-郭扎断裂; QCF 其香错断裂; RPF 日干配错断裂; AMS 阿尼玛卿-昆仑缝合带; JS 金沙缝合带; BNS 班公怒江缝合带; YZS 雅鲁藏布江缝合带
Fig. 1 The tectonic setting of the central Tibetan plateau and adjacent regions(Adapted after Taylor et al. 2009 for the tectonics, and the GPS data are from Gan et al., 2007).

因此, 为了理解青藏高原中部的变形模型, 本文通过Google Earth卫星影像对其香错断裂进行了详细的解译, 选取了1个典型断错地貌点, 开展了野外考察和晚第四纪测年, 并利用无人机航拍结合差分GPS地面控制点测量获取了高精度、 高分辨率的断错地貌区的DEM, 利用LaDiCaoz_v2.1软件自动提取了最佳位错量及范围, 约束了其香错断裂全新世的滑动速率。

1 其香错断错地貌特征

在藏语中, “ 错” 是指湖泊。Taylor 等(2009)得到的青藏高原及邻区的新构造图给出了其香错断裂的位置展布及运动学性质, 但文中没有对该断裂进行命名, 早期也没有针对其的更深入的研究, 沿断裂分布的最大的湖是其香错, 因此我们称该断裂为其香错断裂。该断裂位于高原腹地那曲地区, 平均海拔4i800m, 整体呈N60° E走向, Taylor等(2009)给出的图中显示其长度> 300km(图2a)。借助现有的Google Earth影像对其香错断裂进行了详细的追踪解译, 在中段获取了长约200km的断层几何展布(图2b), 选取几个典型的断错地貌展示了断裂的左旋走滑特征(图2c-e), 并且选取了1个典型的位错地貌面点开展了进一步的研究工作(图3)。

图2 其香错断裂展布及典型位错地貌影像
a 其香错断裂展布(自Taylor et al., 2009); b 本研究基于影像解译获取的其香错断裂的中段展布; c 连续的断层坎左旋位错中间的3条冲沟; d 沿断裂发育串珠状水塘, 其中1个水塘被左旋位错约百米; e 一系列冲沟被左旋位错 (箭头指示了断裂的展布方向)
Fig. 2 The distribution of the Qixiang Co Fault and some faulted landform(image from Google Earth).

图3 研究区位错地貌面及解译图(Google Earth影像)Fig. 3 The topography and interpretation of the study area(image from Google Earth).

该点位于其香错NE约8km处, 属于西藏那曲地区双湖县雅曲乡(图3)。汇入其香错的河流出山口处发育T1、 T2和T3三级地貌面, 拔河高度依次为12m、 17m和37m, T1地貌面较窄, T2、 T3地貌面较宽(图4a)。其香错断裂左旋断错T2、 T3地貌面, 断层迹线较清晰且较平直(图4c, d), T2地貌面上1条最大的冲沟被明显左旋位错(图4b), T3与T2之间的地貌坎被左旋位错约200m。由于河流的侵蚀作用和河流拐弯, 低级地貌面的左旋位错没有很好地保存下来。

图4 断错地貌野外照片
a 三级地貌面整体发育情况; b T2地貌面上最大冲沟约21m的左旋位错; c T2地貌面上的断层陡坎显示了约1m的垂向位错; d 断层陡坎。 照片拍摄位置及角度见图2a
Fig. 4 Field photos of the fault and the sample characteristics.

2 其香错断裂全新世滑动速率
2.1 无人机数据采集及分析

采用的航空测量平台是1架小型的四旋翼大疆无人机--精灵4(DJI Phantom 4 Pro), 搭载1英寸2i000万像素Exmor R CMOS传感器, 飞机飞行高度设置为100m, 共拍摄有效航空照片368张, 覆盖的区域范围约为500m× 1i500m。由于该区域内无明显的特征地面点, 因此均匀布设6个人工标靶(一次性餐盘)作为地面控制点(GCP), 在飞机飞行之前均匀放置在整个研究区。利用无人机获取影像数据后, 使用差分GPS(型号为Trimble R8)精确测量了6个地面控制点的三维空间坐标。研究区内采集的正射影像数据地面分辨率为4.24cm/pix; 采集的SfMiDEM数据, 所选6个地面控制点(GCP)的平均高程误差为0.2m, 数据分辨率为8.47cm/pix; 此数据精度和分辨率很好地满足了研究需要。利用Photoscan 1.2.6软件处理生成了测量区数字高程数据(DEM)。利用Surfer 12.0软件对获取的DEM进行了Shaded Relief功能处理, 获得了很好的地形高程信息(图5a), 测绘区域跨断层发育十多条冲沟, 其中大部分(见图5a编号)冲沟被明显位错, 位错量在几米到二十几米不等。在T2阶地面上, 最长的冲沟显示出最大的位错, 利用LaDiCaoz_v2.1软件(Zielke et al., 2010)自动提取了该冲沟的水平最佳位错量及范围, 分别为21.3m与14.2~28.4m(图6)。利用ArcGis 10.2软件垂直断层走向提取了4条高程纵剖面, 分别在T2和T3地貌面上提取2条(图5b)。在Grapher 10软件的辅助下, 获得了4个剖面垂向上的位错量, 其中T2地貌面上的P1和P2剖面的垂向位错量约1m, T3地貌面上的P3和P4剖面的垂向位错量约12m。

图5 断层山影图(a)及T2、 T3地貌面上跨断层地形剖面(b)Fig. 5 Hillshade map of channels generated from UAV-based digital elevation models, showing that over ten channels are consistently offset in sinistral sense of motion(a) and topographic profiles of the T2 and T3 across the Qixiang Co Fault(b).

图6 利用LaDiCaoz_v2.1软件自动提取1号冲沟位错图
a 最大冲沟地貌图; b 最大冲沟最佳位错量复原图; c 沿a中红线和蓝线投影到断层面上的冲沟地貌剖面; d 自动匹配冲沟后的剖面位置
Fig. 6 Current and after back-slipping hillshade maps of the maximum channel, and the topographic profiles along red and blue lines projected onto the fault plane based on channel obliquity.

2.2 U系测年

在干旱、 半干旱地区, 地貌面废弃之后, 开始的成土作用使溶解的碳酸盐向下淋滤, 逐渐在砾石底部成层堆积, 形成半透明黄色钙膜(Pedogenic carbonate coatings)(Fletcher et al., 2010, 2011)。在相邻区域的双虎地堑, Blisniuk等(2003)利用U系测年方法测量了碳酸盐沉积样品, 很好地约束了地貌面的年龄, 获得了双虎地堑的伸展速率。该地区基岩同样以灰岩为主, 我们在T2、 T3地貌面上分别开挖了约1m深的采样探坑, 由于T3地貌面沉积物颗粒较细且含有大量的黏土, 故没有采集到合适的样品; 在T2地貌面深约50cm处采集了2个碳酸盐沉积样品用于U系测年, 野外编号分别为QXC-1和QXC-2(图7)。利用刀片将紧贴砾石表面的半透明黄色钙膜取下, 利用手持打磨机打磨其顶、 底面祛除杂质, 之后用超声波清洗并烘干。U-Th化学分析流程参照文献(Douville et al., 2010)。本研究使用南京师范大学钟乳石同位素实验室的多接收电感耦合等离子体质谱(Neptune MC-ICPMS)测试U和Th同位素。采用标样与样品交叉测试的方法(standard-sample-standard bracketing)(Goldstein et al., 2003)。对初始数据依次校正了拖尾效应、 氢化物干扰、 质量歧视和SEM与法拉第杯的增益(Shao et al., 2017)。2个样品的U-Th分析结果见表1

表1 QXC-1和QXC-2的U系测年结果 Table1 MC-ICPMS U-series dating results for QXC-1 and QXC-2

图7 采样探坑剖面及样品特征
a 采样探坑野外照片及剖面图; b 采集的U系样品照片及样品厚度
Fig. 7 Field photos of the trench profile and samples characteristics.

2.3 其香错断裂左旋走滑与垂向滑动速率

在T2地貌面上深50cm处采集的2个样品年龄分别为(4.98± 0.17)ka和(5.98± 0.07)ka。 U系测年结果是地貌面形成以来的年龄, 因此, 选择较老的(5.98± 0.07)ka代表T2地貌面的最小形成年龄, 即年龄下限。T2地貌面上最大冲沟肯定是T2地貌面废弃以后形成的, 其水平左旋位错为(21.3± 7.1)m, 可以作为位错的最小值, 即位错量的下限; 其断层陡坎垂直位错量为(0.9± 0.1)m。利用年龄下限和位错量下限, 可约束其香错断裂全新世左旋走滑速率约为(3.56± 1.19)mm/a, 垂向滑动速率最大值约为(0.15± 0.02)mm/a。

3 讨论与结论

由于T2地貌面形成以来的水平位错没有很好地保存, 其上发育的最大冲沟左旋位错量可以代表其形成以来的最小位错量(Cowgill, 2007)。T3与T2地貌坎被左旋位错约200m, 代表了T3地貌面形成以来的水平位错。T2和T3地貌面的垂向位错量分别约1m和12m。T2、 T3地貌面形成以来的左旋位错和垂向位错呈近似比例关系, 反映了其香错断裂晚第四纪以来以左旋走滑为主兼有部分垂向分量的运动特征没有随时间的变化而改变。其香错断裂北西盘抬升、 南东盘下降及左旋走滑的运动学特征与青藏高原中部地壳物质向E运移特征(Tapponnier et al., 2001; Wang et al., 2001; Gan et al., 2007)相符合。

通过Google Earth影像获取的断错地貌以及野外考察都揭示了其香错断裂长期运动方向不是利用InSAR方法得到的右旋走滑(Garthwaite et al., 2013), 而是左旋走滑。其香错断裂全新世左旋走滑速率为(3.56± 1.19)mm/a, 该速率与其南侧的共轭断裂(NW向右旋走滑格仁错断裂)的速率基本一致(杨攀新等, 2012; Shi et al., 2014; Wang et al., 2016; 王躲, 2018)。对于青藏高原中部变形模型的理解, 本研究所得的其香错断裂晚第四纪左旋走滑的断错地貌证据及滑动速率的量级显示出青藏高原中部变形符合Taylor 等(2003)提出的共轭走滑断裂模式, 也间接地不支持大陆逃逸模型提出的喀喇昆仑-嘉黎断裂带北侧的羌塘块体做高速的向E逃逸模式。

致谢 本文在LaDiCaoz_v2.1软件应用上得到罗佳宏、 杨海波、 康文君博士生热心的指导与讨论, 审稿人提出了修改建议, 在此一并表示感谢。

The authors have declared that no competing interests exist.

参考文献
1 李海兵, Valli F, 许志琴, . 2006. 喀喇昆仑断裂的变形特征及构造演化[J]. 中国地质, 33(2): 239-255.
LI Hai-bing, Valli F, XU Zhi-qin, et al. 2006. Deformation and tectonic evolution of Karakorum Fault, western Tibet[J]. Geology in China, 33(2): 239-255(in Chinese). [本文引用:1]
2 任金卫, 沈军, 曹忠权, . 2000. 西藏东南部嘉黎断裂新知[J]. 地震地质, 22(4): 344-350.
REN Jin-wei, SHEN Jun, CAO Zhong-quan, et al. 2000. Quaternary faulting of Jiali Fault, southeast Tibetan plateau[J]. Seismology and Geology, 22(4): 344-350(in Chinese). [本文引用:1]
3 沈军, 汪一鹏, 任金卫, . 2003. 青藏高原东南部第四纪右旋剪切运动[J]. 新疆地质, 21(1): 120-125.
SHEN Jun, WANG Yi-peng, REN Jin-wei, et al. 2003. Quaternary dextral shearing and crustal movement in southeast Tibetan plateau[J]. Xinjiang Geology, 21(1): 120-125(in Chinese). [本文引用:1]
4 王躲, 2018. 青藏高原中部格仁错断裂带构造地貌研究 [D]. 北京: 中国地震局地质研究所.
WANG Duo. 2018. Tectonic geomorphology along the Gyaring Co Fault in central Tibet [D]. Institute of Geology, China Earthquake Administration, Beijing(in Chinese). [本文引用:2]
5 王二七, Burchfiel B C, 季建清, 2001. 东喜马拉雅构造结新生代地壳缩短量的估算及其地质依据[J]. 中国科学(D辑), 31(1): 1-9.
WANG Er-qi, Burchfiel B C, JI Jian-qing, 2001. Evidence and estimation of Cenozoic crustal shortening across the eastern Himalaya syntax[J]. Science China(Ser D), 31(1): 1-9(in Chinese). [本文引用:1]
6 吴中海, 吴珍汉, 胡道功, . 2006. 青藏铁路唐古拉山-拉萨段全新世控震断裂研究[J]. 地质通报, 25(12): 1387-1401.
WU Zhong-hai, WU Zhen-han, HU Dao-gong, et al. 2006. Holocene seismogenic faults along the Tanggula-Lhasa section of the Qinghai-Tibet railway, China[J]. Geological Bulletin of China, 25(12): 1387-1401(in Chinese). [本文引用:1]
7 许志琴, 李海兵, 唐哲民, . 2011. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报, 27(11): 3157-3170.
XU Zhi-qin, LI Hai-bing, TANG Zhe-min, et al. 2011. The transformation of the terrain structures of the Tibet Plateau through large-scale strike-slip faults[J]. Acta Petrologica Sinica, 27(11): 3157-3170(in Chinese). [本文引用:1]
8 杨攀新, 陈正位, 张俊, . 2012. 西藏中南部格仁错断裂张剪性质及其区域动力学意义[J]. 地球物理学报, 55(10), 3285-3295.
YANG Pan-xin, CHEN Zheng-wei, ZHANG Jun, et al. 2012. The tension-shear of Gyaring Co Fault and the implication for dynamic model in south-central Tibet[J]. Chinese Journal of Geophysics, 55(10): 3285-3295(in Chinese). [本文引用:2]
9 张培震, 王敏, 甘卫军, . 2003. GPS 观测的活动断裂滑动速率及其对现今大陆动力作用的制约[J]. 地学前缘, 10(S1): 81-92.
ZHANG Pei-zhen, WANG Min, GAN Wei-jun, et al. 2003. Slip rates along major active faults from GPS measurements and constraints on contemporary continental tectonics[J]. Earth Science Frontiers, 10(S1): 81-92(in Chinese). [本文引用:1]
10 Armijo R, Tapponnier P, Han T L. 1989. Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J]. Journal of Geophysical Research, 94(B3): 2787-2838. [本文引用:2]
11 Blisniuk P M, Sharp W D. 2003. Rates of late Quaternary normal faulting in central Tibet from U-series dating of pedogenic carbonate in displaced fluvial gravel deposits[J]. Earth and Planetary Science Letters, 215(1): 169-186. [本文引用:1]
12 Cheng H, Edwards R L, Shen C C, et al. 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry[J]. Earth and Planetary Science Letters, 371-372: 82-91. [本文引用:1]
13 Chevalier M L, Van der Woerd J, Tapponnier P, et al. 2015. Late Quaternary slip-rate along the central Bangong-Chaxikang segment of the Karakorum Fault, western Tibet[J]. Geological Society of America Bulletin, 128(1-2): 284-314. [本文引用:1]
14 Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China[J]. Earth and Planetary Science Letters, 254: 239-255. [本文引用:1]
15 Douville E, Sallé E, Frank N, et al. 2010. Rapid and accurate U-Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry[J]. Chemical Geology, 272(1): 1-11. [本文引用:1]
16 England P, McKenzie D. 1982. A thin viscous sheet model for continental deformation[J]. Geophysical Journal International, 70(2): 295-321. [本文引用:1]
17 Fletcher K E K, Rockwell T K, Sharp W D. 2011. Late Quaternary slip rate of the southern Elsinore Fault, Southern California: Dating offset alluvial fans via230Th/U on pedogenic carbonate[J]. Journal of Geophysical Research: Earth Surface, 116(F2): F02006. [本文引用:1]
18 Fletcher K E K, Sharp W D, Kendrick K J, et al. 2010. 230Th-U dating of a late Pleistocene alluvial fan along the southern San Andreas Fault[J]. Geological Society of America Bulletin, 122(9-10): 1347-1359. [本文引用:1]
19 Gan W J, Zhang P Z, Shen Z K, et al. 2007. Present-day crustal motion within the Tibetan plateau inferred from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 112(B8): B08416. [本文引用:2]
20 Garthwaite M C, Wang H, Wright T J. 2013. Broadscale interseismic deformation and fault slip rates in the central Tibetan plateau observed using InSAR[J]. Journal of Geophysical Research: Solid Earth, 118(9): 5071-5083. [本文引用:1]
21 Goldstein S J, Stirling C H. 2003. Techniques for measuring uranium-series nuclides: 1992-2002[J]. Reviews in Mineralogy and Geochemistry, 52(1): 23-57. [本文引用:1]
22 Jaffey A H, Flynn K F, Glendenin L E, et al. 1971. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 4(5): 1889-1906. [本文引用:1]
23 Klootwijk C T, Gee J S, Peirce J W, et al. 1992. An early India-Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121[J]. Geology, 20(5): 395-398. [本文引用:1]
24 Liang S M, Gan W J, Shen C Z, et al. 2013. Three-dimensional velocity field of present-day crustal motion of the Tibetan plateau derived from GPS measurements[J]. Journal of Geophysical Research: Solid Earth, 118(10): 5722-5732. [本文引用:1]
25 Molnar P, Tapponnier P. 1975. Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 189(4201): 419-426. [本文引用:1]
26 Patriat P, Achache J. 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates[J]. Nature, 311(18): 615-621. [本文引用:1]
27 Shao Q, Pons-Branchu E, Zhu Q, et al. 2017. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 88(1): 1-13. [本文引用:1]
28 Shi X H, Kirby E, Lu H J, et al. 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41: 5829-5837. [本文引用:2]
29 Tapponnier P, Molnar P. 1976. Slip-line field theory and large-scale continental tectonics[J]. Nature, 264: 319-324. [本文引用:1]
30 Tapponnier P, Xu Z Q, Roger F, et al. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. [本文引用:3]
31 Taylor M, Peltzer G. 2006. Current slip rates on conjugate strike-slip faults in central Tibet using synthetic aperture radar interferometry[J]. Journal of Geophysical Research, 111: B12402. [本文引用:1]
32 Taylor M, Yin A. 2009. Active structures of the Himalayan-Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism[J]. Geosphere, 5(5): 199-214. [本文引用:2]
33 Taylor M, Yin A, Ryerson F J, et al. 2003. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan plateau[J]. Tectonics, 22(4): 567-591. [本文引用:1]
34 Wang D, Yin G, Wang X, et al. 2016. OSL dating of the late Quaternary slip rate on the Gyaring Co Fault in central Tibet[J]. Geochronometria, 43(1): 162-173. [本文引用:2]
35 Wang Q, Zhang P Z, Freymueller J T, et al. 2001. Present-day crustal deformation in China constrained by global positioning system measurements[J]. Science, 294(5542): 574-577. [本文引用:2]
36 Zhang P Z, Shen Z K, Wang M, et al. 2004. Continuous deformation of the Tibetan plateau from global positioning system data[J]. Geology, 32(9): 809-812. [本文引用:1]
37 Zielke O, Arrowsmith J R, Grant Ludwig L, et al. 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119-1122. [本文引用:1]