〔作者简介〕 许冲, 男, 1982年生, 2011年于中国科学院地质与地球物理研究所获博士学位, 研究员, 研究方向为地震滑坡与地震地质, 电话: 13522561327, 010-62009143, E-mail: xc11111111@126.com。
文中基于地震前后高分辨率卫星影像的人工目视解译方法, 结合野外实地考察, 建立2015年4月25日尼泊尔廓尔喀 MW7.8地震触发滑坡数据库。结果表明本次地震触发了至少47200处滑坡, 这些滑坡在空间上大体呈NWW向分布, 与地震发震构造位置与走向大体一致。这些滑坡的总面积为110km2, 分布在1个面积约35700km2的椭圆形区域内。根据地震滑坡 “面积( A)-体积( V)”幂律关系式 V=1.3147×A1.2085, 估计这些滑坡的总体积约9.64×108m3。在滑坡分布的椭圆形区域内, 滑坡点密度、 面密度、 体积密度分别为1.32km-2、 0.31%与0.027m。文中提供了1个全面详细的廓尔喀地震滑坡数据库, 为分析地震滑坡机制、 分布样式、 规律与危险性评估等提供了重要的基础数据, 也为全球视角下的多震例地震滑坡研究提供了1个俯冲带地区推覆断层型地震滑坡实例。
In this study, a detailed database of landslides triggered by the 25 April 2015 Gorkha(Nepal) MW7.8 earthquake is constructed based on visual interpretation of pre- and post-earthquake high-resolution satellite images and field reconnaissance. Results show the earthquake triggered at least 47200 landslides, which have a NWW direction spatial distribution, similar with the location and strike of the seismogenic fault. The landslides are of a total area about 110km2 and an oval distribution area about 35700km2. On the basis of a scale relationship between landslide area( A)and volume( V), V=1.3147×A1.2085, the total volume of the coseismic landslides is estimated to be about 9.64×108m3. In the oval landslide distribution area, the landslide number density, area density, and volume density were calculated and the results are 1.32km-2, 0.31%, and 0.027m, respectively. This study provides a detailed and objective inventory of landslides triggered by the Gorkha earthquake, which provides very important and essential basic data for study of mechanics of coseismic landslides, spatial pattern, distribution law, and hazard assessment. In addition, the landslide database related to an individual earthquake also provides an important earthquake case in a subduction zone for studying landslides related to multiple earthquakes from a global perspective.
2015年4月25日, 尼泊尔中部廓尔喀发生了MW7.8地震。据统计, 本次地震造成了至少造成8i800人死亡与数万人受伤(Hashash et al., 2015)。由于地震影响区地形陡峻, 为高山峡谷区, 因此本次地震也触发了大量的滑坡, 这些滑坡直接造成的灾害占地震灾害的比例相当大。尽管本次地震发生的尼泊尔中部地区在历史上曾发生过多次强震, 但是关于该地区历史地震滑坡的研究较少, 这限制了研究人员客观认识该地区地震触发滑坡的能力与地震滑坡的发生机理和分布规律等。鉴于此, 本文基于地震前后高分辨率卫星影像目视解译方法, 并结合滑坡野外调查结果, 建立详细客观的廓尔喀地震滑坡数据库。结果表明本次地震触发了至少47i200处滑坡, 总面积约110km2。这些滑坡分布在1个面积约35i700km2的椭圆形区域内。与已有的本次地震触发滑坡数据库成果(Kargel et al., 2016; Xu et al., 2016b; Gnyawali et al., 2017; Martha et al., 2017; Roback et al., 2017; Tiwari et al., 2017)相比, 本文得到的结果详细完整得多, 更客观反映了本次地震触发滑坡情况, 对分析同震滑坡机理、 分布规律, 危险性评价, 地震滑坡演化规律研究, 震后震区滑坡防灾减灾等均具有重要的价值与意义。
印度板块俯冲于青藏高原之下, 并持续向N运动, 形成了近EW向展布的喜马拉雅造山带(Powell et al., 1973; Royden et al., 2008), 这是全球构造运动最活跃的地区之一。该区域地壳运动与地震活动异常强烈, 活动构造构造发育, 自南向北发育3条缓倾角的向N倾的深大逆冲推覆断层带(图1), 依次为主前缘(MFT)、 主边界(MBT)与主中央逆冲断裂带(MCT)。这3条断裂在深部会聚成1条断裂带, 即主喜马拉雅逆冲带(MHT)(Upreti, 1999)。本次地震的发震断层被认为是主前缘逆冲断裂带(MFT), 但是破裂没有到达地表, 深度在地下5~15km的范围(Elliott et al., 2016; Hubbard et al., 2016)。地震破裂总时长约60s, 破裂的扩展速度约3.0km/s(Avouac et al., 2015; Kobayashi et al., 2016)。主震发生45d内, 共记录到553个MW> 4.0的余震(Adhikari et al., 2015)。本次地震主震破裂为单向破裂, 方向为E。最大的余震发生在主震后17d的5月12日, 震级为MW7.3, 发生在余震分布区的东边界。也就是说MW7.8主震与MW7.3最强余震中间的区域是余震分布的大体区域。
本研究综合采用基于卫星遥感影像的滑坡目视解译与野外调查验证2种方法, 来建立廓尔喀地震滑坡数据库。震前的遥感影像主要来自Google Earth, 其所提供的震前影像覆盖全、 分辨率高、 质量好, 可有效排除掉震前存在的滑坡。震后卫星影像主要有2个来源:一是中国资源卫星应用中心提供的国产卫星影像, 如CB04、 GF1、 GF2、 ZY02C与ZY3等卫星数据(图2); 二是来自Google Earth的高分辨率卫星影像, 如CNES/Astrium、 DigitalGlobe的真彩色与全色影像等(图3)。图2中的卫星影像数据采集时间为2015年4月27日至5月18日, 图3中的卫星影像采集时间为2015年4月27日— 6月10日, 而地震区的雨季为6— 9月, 这保证了所采用的震后遥感影像基本来自雨季之前, 所得到的地震滑坡结果受后续降雨的影响极小, 也基本没有将后续降雨滑坡识别为地震滑坡的情况。两者基本覆盖了整个椭圆形滑坡分布区域, 仅有约1%的区域(约350km2)是上述震后影像覆盖的空白区域, 在本研究中采用15m分辨率的Landsat8影像来补充。尽管分辨率较低, 但是这350km2的区域位于滑坡分布区的边界附近, 同震滑坡很少。因此, 这一区域影像的低分辨率对结果滑坡数据库的影响很小。
本研究采用的遥感影像分辨率相当高, 基本可以满足同震滑坡解译与滑坡数据库的建设要求。为验证地震滑坡解译结果, 进一步提高地震滑坡数据库的客观性与精度, 本研究开展了部分区域的同震滑坡野外验证。野外考察时间为2015年6月13— 17日。野外调查中, 总行驶里程约680km(图4)。考察路线主要包括沿着阿尼哥公路与沙拉公路, 即从尼泊尔首都加德满都分别到中国的樟木口岸与吉隆口岸, 还包括2条公路之间的一些路线(Xu et al., 2017)。考察过程中主要比对公路两侧的滑坡与解译的结果, 并拍摄典型滑坡照片。沿考察线路两侧解译的结果在野外均得到了良好的验证, 仅一些规模很小的滑坡(数方)在遥感影像上难以判识。这些极小规模的滑坡尽管数量较多, 但是其体积占同震滑坡总体积的比率相当小, 因此这些极小规模滑坡的遗漏并不影响对地震滑坡总体客观信息的获取与后续的科学研究。
结果表明本次地震触发了至少47i200处滑坡, 滑坡密集区在空间上大体呈NWW向分布, 与地震发震构造位置与走向大体一致。这些滑坡的总面积为110km2, 分布在1个面积约35i700km2的椭圆形区域内(图5)。根据地震滑坡 “ 面积(A)-体积(V)” 幂律关系式V=1.314i7× A1.208i5(Xu et al., 2016a), 估计这些滑坡的总体积约9.64× 108m3。在滑坡分布区内, 滑坡点密度为滑坡数量/滑坡分布区面积=47i200/35i664km2=1.32km-2; 滑坡面密度为滑坡总面积/分布区面积× 100%=110.46km2/35i664km2× 100%=0.31%; 滑坡体积密度为滑坡总体积/分布区面积964× 106m3/35i664km2=0.027m。这47i200处同震滑坡中, 面积最大的> 600i000m2, 面积最小的仅1~2m2。其中面积> 100i000m2的滑坡22处, 面积位于10i000~100i000m2之间的滑坡2i042处; 面积位于1i000~10i000m2之间的滑坡18i359处; 面积位于100~1i000m2之间的滑坡有24i109处; 剩余2i668处滑坡面积< 100m2。
以1km为搜索半径, 点密度类型选择Kernel, 制作这些滑坡的点密度分布图, 导出栅格分辨率设置为100m, 制作廓尔喀地震滑坡点密度栅格分布图。最大的滑坡点密度值为132.2km-2。将滑坡点密度分为9类, 分别为0、 0~1km-2、 1~2km-2、 2~5km-2、 5~10km-2、 10~20km-2、 20~50km-2、 50~100km-2 与100~132.2km-2, 制作滑坡点密度分类图(图6)。地震滑坡高密度区位于MW7.8主震震中与MW7.3最强余震震中之间的近矩形区域, 长约170km, 宽约40km。滑坡点密度大小与分布面积的统计关系见表1, 有助于定量理解廓尔喀地震滑坡发育情况及其空间分布情况。
目前, 已有一些廓尔喀地震滑坡数据库的成果出版, 表2列举了目前能检索到的覆盖整个地震区的滑坡数据库成果, 还有本研究得到的成果。这些成果中, 滑坡数量最小的仅仅1i975处(Sharma et al., 2018)。滑坡数量最多的是本研究的成果, 得到47i200处滑坡, 其次是约24i915处地震滑坡(Roback et al., 2017)。本研究得到的尼泊尔滑坡数量、 滑坡数据库详细程度远高于其他成果。即使是当前已经发表的最详细的成果, 也仅仅是本研究得到的滑坡数量的53%。为了对比本研究与以往的成果, 本文选择2个区域对本研究结果与当前最多的同震滑坡结果(Roback et al., 2017)进行对比。图7展示了2个小区域的地震前后的遥感影像与地震滑坡解译结果。通过图7a与7b的比对, 可以利用遥感影像上的植被变化对地震滑坡进行客观解译。图中红色区域为本研究解译成果, 紫色区域为Roback等(2017)的解译结果。本研究表明在该区域内发生了26处地震滑坡, 而Roback等(2017)仅仅解译出2处滑坡。图7c与7d展示了另1个区域地震前后的卫星影像与2组滑坡数据。由于该区域地震前后影像的质量与分辨率较高, 这一区域内的地震滑坡也同样很容易辨识。 图中, 本研究得到的红色区域对地震滑坡的真实性与客观性的反映要优于紫色区域展示的解译结果。当然, 2个数据库成果并非在所有的区域都有如此显著的差异。因此, 通过这2个区域的对比, 可以认为局部区域的地震滑坡漏判是造成当前出版的成果中廓尔喀地震滑坡数量少的主要原因。造成这种漏判的原因可能是多方面的, 比如基础影像的质量、 解译人员的专业知识与解译经验等。本文成果与Roback等(2017)的成果得到的滑坡总面积的差距比滑坡数量的差距小得多, Roback等(2017)的地震滑坡总面积为本文成果的82%。这表明了2个成果对将单体滑坡从连片滑坡中分离出来的标准是基本一致的, 对大型滑坡与中型滑坡的解译标准与结果精度也应该是比较一致的。而对局部区域内的中小型与小型规模的滑坡的辨识与解译存在较大的差距。除了表2列举的成果外, 也有一些局部地区的研究成果(Zhang et al., 2016; Tsou et al., 2018), 并未覆盖整个地震区, 因此不能称为完整与客观的廓尔喀地震滑坡数据库。
尽管地震滑坡已有数十年的研究历史, 但是地震滑坡数据库的积累依然较少, 大大限制了研究人员在全球视角下开展地震滑坡与震级、 发震构造、 区域地形与地质条件等的关系研究。图8展示了全球范围内有地震滑坡数据库的35个地震事件的震中分布情况; 表3为这些地震事件对应的滑坡数据库的信息汇总。其中部分滑坡数据库由于产出的年代较久, 受当时技术条件的限制, 滑坡数据库以纸质图的方式呈现。这些地震滑坡的纸质图成果被称作 “ 滑坡编录图” 更合适, 在GIS平台下将滑坡分布图纸校正与将滑坡矢量化之后, 再对滑坡赋予一些必要的属性, 才可称之为 “ 滑坡数据库” 。也有一些滑坡数据库成果是用滑坡点标识的, 或者存在较明显的滑坡目标的遗漏, 这些会影响滑坡数据库的质量。而在应用这些数据库的时候其质量是需要考虑的重要因素。因此, 总体上, 同震滑坡数据库的现存量与成果依然较为匮乏。其中记录到的单次地震触发滑坡最多、最全面的成果2008年汶川地震滑坡数据库, 这次地震触发了至少197i481处滑坡, 总面积约1i160km2(Xu et al., 2013a, 2014d)。其次记录到滑坡数量最多的就是本研究的廓尔喀地震滑坡数据库成果, 库中其记录47i200处同震滑坡, 滑坡总面积为110km2。本研究所得结果为青藏高原南缘的喜马拉雅山区地震滑坡研究提供了丰富的资料与重要的基础数据, 具有重要的意义与价值。
本研究建立了1个详细客观的2015年尼泊尔廓尔喀 MW7.8地震滑坡数据库。结果表明本次地震触发47i200处滑坡, 这些滑坡总面积为110km2, 估计总体积为9.64× 108m3。这些滑坡大体分布在1个长轴为NWW向的近椭圆形区域内, 面积为35i700km2。在该区域内, 滑坡点密度、 面密度、 体积密度分别为1.32km-2、 0.31%与0.027m。本文还基于这些滑坡制作滑坡点密度分布图, 最大的滑坡点密度高达132.2km-2。总结了已出版的覆盖整个地震区的本次地震滑坡数据库成果, 通过与已有成果滑坡总数量的对比, 以及2个小区域内的解译结果的对比可知, 本研究得到滑坡数据库比其他成果更为详细与客观。本研究还列举了目前全球范围内仅有的35个地震触发滑坡的编录图或数据库信息, 指出了当前的地震滑坡数据库依然是比较匮乏的。本研究一方面提供了1个详细的廓尔喀地震滑坡数据库, 为分析廓尔喀地震滑坡机制、 分布样式、 规律与危险性评估等提供了重要的基础数据; 另一方面也提供了1个仅次于2008年汶川地震滑坡数量的单次地震触发滑坡详细的数据库实例, 其对理解喜马拉雅地区地震滑坡发生规律, 全球视角下的多震例地震滑坡研究的重要性不言而喻。
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|